

May 1988 Revised August 1999

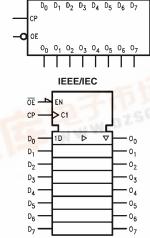
74F374

Octal D-Type Flip-Flop with 3-STATE Outputs

General Description

The 74F374 is a high-speed, low-power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable (OE) are common to all flip-flops.

Features


- Edge-triggered D-type inputs
- Buffered positive edge-triggered clock
- 3-STATE outputs for bus-oriented applications
- Guaranteed 4000V minimum ESD protection

Ordering Code:

Order Number	Package Number	Package Description
74F374SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F374SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F374MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F374PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

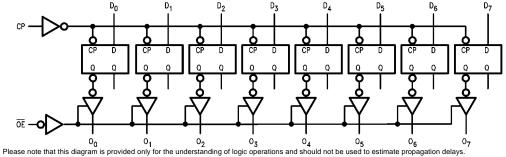
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Pin Names	December 1	U.L.	Input I _{IH} /I _{IL}		
	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
D ₀ -D ₇	Data Inputs	1.0/1.0	20 μA/-0.6 mA		
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 μA/–0.6 mA		
ŌĒ	3-STATE Output Enable Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA		
O ₀ -O ₇	3-STATE Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)		


Functional Description

The 74F374 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (OE) LOW, the contents of the eight flip-flops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affected the state of the flipflops.

Truth Table

Inputs			Internal	Output		
D _n	СР	OE	Register	O _n		
Н	~	L	Н	Н		
L	~	L	L	L		
Χ	Χ	Н	Х	Z		

Logic Diagram

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

 $\begin{array}{ll} \mbox{Storage Temperature} & -65\mbox{°C to } +150\mbox{°C} \\ \mbox{Ambient Temperature under Bias} & -55\mbox{°C to } +125\mbox{°C} \\ \end{array}$

Ambient Temperature under Bias -55°C to +125°C

Junction Temperature under Bias -55°C to +150°C

-55°C to +150°C

 $\begin{array}{lll} \text{V}_{\text{CC}} \text{ Pin Potential to Ground Pin} & -0.5 \text{V to } +7.0 \text{V} \\ \text{Input Voltage (Note 2)} & -0.5 \text{V to } +7.0 \text{V} \\ \text{Input Current (Note 2)} & -30 \text{ mA to } +5.0 \text{ mA} \\ \end{array}$

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{lll} \mbox{Standard Output} & -0.5\mbox{V to V}_{\mbox{CC}} \\ \mbox{3-STATE Output} & -0.5\mbox{V to } +5.5\mbox{V} \end{array}$

Current Applied to Output

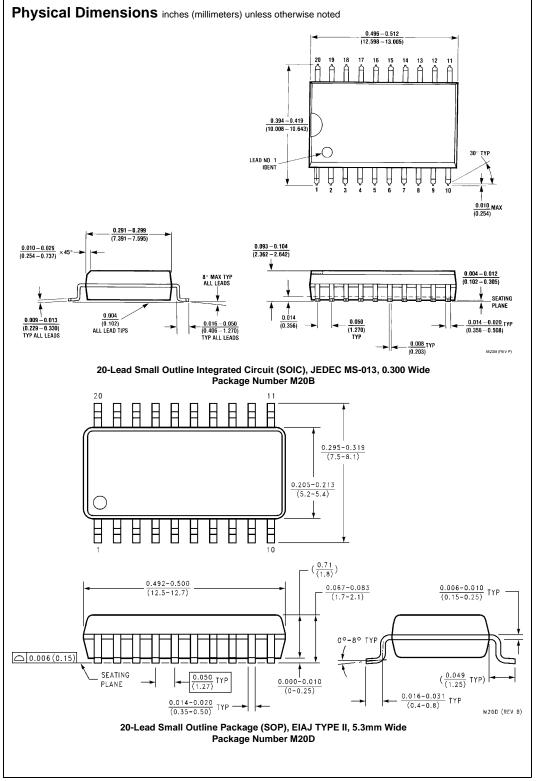
in LOW State (Max) twice the rated I_{OL} (mA)
ESD Last Passing Voltage (Min) 4000V

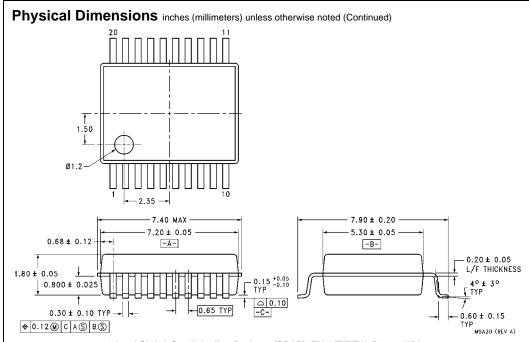
Free Air Ambient Temperature $0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C}$ Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation

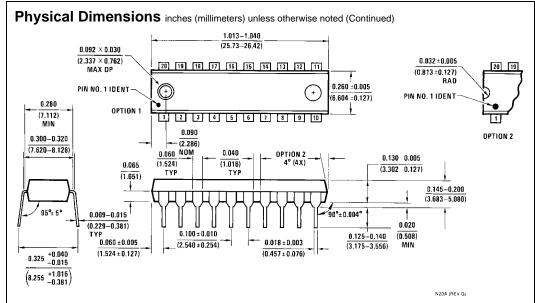
under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5					I _{OH} = -1 mA
	Voltage	10% V _{CC}	2.4			V	Min	$I_{OH} = -3 \text{ mA}$
		5% V _{CC}	2.7			V	IVIIN	$I_{OH} = -1 \text{ mA}$
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA
	Voltage							
I _{IH}	Input HIGH				5.0	^	Max	\/ 2.7\/
	Current				5.0	μА	IVIAX	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current	t			7.0	^	Max	V 7.0V
	Breakdown Test				7.0	μА	IVIAX	V _{IN} = 7.0V
I _{CEX}	Output HIGH				50		Max	V V
	Leakage Current				50	μА	IVIAX	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$
	Test		4.75			V	0.0	All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μА	0.0	V _{IOD} = 150 mV
	Circuit Current				3.73	μΑ	0.0	All Other Pins Grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	V _{IN} = 0.5V
l _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V
l _{OZL}	Output Leakage Current				-50	μΑ	Max	V _{OUT} = 0.5V
los	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V
I _{CCZ}	Power Supply Current			55	86	mA	Max	V _O = HIGH Z

Symbol	Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5.0$		_ ^	c to +125°C +5.0V	••	to +70°C +5.0V	Uni
Oyboi	T drameter		$C_L = 50 \text{ pF}$		C _L =	50 pF	$C_L =$	50 pF	
		Min	Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	100	140		60		70		MH
t _{PLH}	Propagation Delay	4.0	6.5	8.5	4.0	10.5	4.0	10.0	ns
t _{PHL}	CP to O _n	4.0	6.5	8.5	4.0	11.0	4.0	10.0	
t _{PZH}	Output Enable Time	2.0	9.0	11.5	2.0	14.0	2.0	12.5	
t_{PZL}		2.0	5.8	7.5	2.0	10.0	2.0	8.5	
t _{PHZ}	Output Disable Time	2.0	5.3	7.0	2.0	8.0	2.0	8.0	n
t _{PLZ}		1.5	4.3	5.5	1.5	7.5	1.5	6.5	


AC Operating Requirements

		$T_A = +25$ °C $V_{CC} = +5.0$ V		$T_A = -55$ °C to +125°C $V_{CC} = +5.0V$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$		Units
Symbol	Parameter							
		Min	Max	Min	Max	Min	Max	İ
t _S (H)	Setup Time, HIGH or LOW	2.0		2.5		2.0		
t _S (L)	D _n to CP	2.0		2.0		2.0		ns
t _H (H)	Hold Time, HIGH or LOW	2.0		2.0		2.0		115
$t_H(L)$	D _n to CP	2.0		2.5		2.0		
t _W (H)	CP Pulse Width	7.0		7.0		7.0		ns
$t_W(L)$	HIGH or LOW	6.0		6.0		6.0		115

20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide Package Number MSA20

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com