

| Pin Names | Description | U.L. <br> HIGH/LOW | Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ <br> Output $\mathbf{I}_{\mathbf{O H}} / \mathbf{I}_{\mathbf{O L}}$ |
| :--- | :--- | :---: | :---: |
| $\mathrm{A}_{0 \mathrm{a}}-\mathrm{A}_{1 \mathrm{a}}$ | Side A Address Inputs | $1.0 / 1.0$ | $20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$ |
| $\mathrm{~A}_{0 \mathrm{~b}}-\mathrm{A}_{1 \mathrm{~b}}$ | Side B Address Inputs | $1.0 / 1.0$ | $20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$ |
| $\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$ | Enable Inputs (Active LOW) | $1.0 / 1.0$ | $20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$ |
| $\overline{\mathrm{OE}}_{\mathrm{a}}, \overline{\mathrm{OE}}_{\mathrm{b}}$ | Output Enable Inputs (Active LOW) | $1.0 / 1.0$ | $20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$ |
| $\mathrm{P}_{\mathrm{a}}, \mathrm{P}_{\mathrm{b}}$ | Polarity Control Inputs | $1.0 / 1.0$ | $20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$ |
| $\mathrm{O}_{0 \mathrm{a}}-\mathrm{O}_{3 \mathrm{a}}$ | Side A 3-STATE Outputs | $150 / 40(33.3)$ | $-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$ |
| $\mathrm{O}_{0 \mathrm{~b}}-\mathrm{O}_{3 \mathrm{~b}}$ | Side B 3-STATE Outputs | $150 / 40(33.3)$ | $-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$ |

Truth Table
(each half)

| Function | Inputs |  |  |  | Outputs |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathrm{OE}}$ | $\overline{\mathrm{E}}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{0}$ | $\mathrm{O}_{0}$ | $\mathrm{O}_{1}$ | $\mathrm{O}_{2}$ | $\mathrm{O}_{3}$ |
| High Impedance | H | X | X | X | Z | Z | Z | Z |
| Disable | L | H | X | X | $\mathrm{O}_{\mathrm{n}}=\mathrm{P}$ |  |  |  |
| Active HIGH | L | L | L | L | H | L | L | L |
| Output | L | L | L | H | L | H | L | L |
| ( $\mathrm{P}=\mathrm{L}$ ) | L | L | H | L | L | L | H | L |
|  | L | L | H | H | L | L | L | H |
| Active LOW | L | L | L | L | L | H | H | H |
| Output | L | L | L | H | H | L | H | H |
| ( $\mathrm{P}=\mathrm{H}$ ) | L | L | H | L | H | H | L | H |
|  | L | L | H | H | H | H | H | L |

Logic Diagram (one half shown)


Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

## Absolute Maximum Ratings(Note 1)

| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Ambient Temperature under Bias | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Junction Temperature under Bias | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\mathrm{CC}}$ Pin Potential to Ground Pin | -0.5 V to +7.0 V |
| Input Voltage (Note 2) | -0.5 V to +7.0 V |
| Input Current (Note 2) | -30 mA to +5.0 mA |
| Voltage Applied to Output |  |
| in HIGH State (with $\left.\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$ |  |
| Standard Output <br> 3-STATE Output |  |
| Current Applied to Output <br> in LOW State (Max) | -0.5 V to $\mathrm{V}_{\mathrm{CC}}$ |
|  | twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$ |

Ambient Temperature under Bias
$\mathrm{V}_{\mathrm{CC}}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
nput Current (Note 2)
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ )
Standard Output

Current Applied to Output
in LOW State (Max) twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$

## Recommended Operating

 Conditions| Free Air Ambient Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs

## DC Electrical Characteristics

| Symbol | Parameter | Min | Typ | Max | Units | $\mathrm{V}_{\mathrm{cc}}$ | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1 \mathrm{H}}$ | Input HIGH Voltage | 2.0 |  |  | V |  | Recognized as a HIGH Signal |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage |  |  | 0.8 | V |  | Recognized as a LOW Signal |
| $\mathrm{V}_{C D}$ | Input Clamp Diode Voltage |  |  | -1.2 | V | Min | $\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ <br> Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ <br>  $5 \% \mathrm{~V}_{\mathrm{CC}}$ <br>  $5 \% \mathrm{~V}_{\mathrm{CC}}$ | $\begin{aligned} & \hline 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$ |  |  | V | Min | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$ |
| $\mathrm{V}_{\text {OL }}$ | Output LOW <br> Voltage $10 \%$ V $_{\text {CC }}$ |  |  | 0.5 | V | Min | $\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$ |
| $\overline{I_{\mathrm{H}}}$ | Input HIGH <br> Current |  |  | 5.0 | $\mu \mathrm{A}$ | Max | $\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ |
| $\mathrm{l}_{\mathrm{BVI}}$ | Input HIGH Current <br> Breakdown Test |  |  | 7.0 | $\mu \mathrm{A}$ | Max | $\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$ |
| $\overline{I_{\text {CEX }}}$ | Output HIGH Leakage Current |  |  | 50 | $\mu \mathrm{A}$ | Max | $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ |
| $\overline{\mathrm{V}} \mathrm{ID}$ | Input Leakage <br> Test | 4.75 |  |  | V | 0.0 | $\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ <br> All Other Pins Grounded |
| $\overline{\mathrm{IDD}}$ | Output Leakage Circuit Current |  |  | 3.75 | $\mu \mathrm{A}$ | 0.0 | $V_{I O D}=150 \mathrm{mV}$ <br> All Other Pins Grounded |
| IL | Input LOW Current |  |  | -0.6 | mA | Max | $\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ |
| ${ }_{\text {IOZH }}$ | Output Leakage Current |  |  | 50 | $\mu \mathrm{A}$ | Max | $\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$ |
| lozL | Output Leakage Current |  |  | -50 | $\mu \mathrm{A}$ | Max | $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ |
| los | Output Short-Circuit Current | -60 |  | -150 | mA | Max | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ |
| Izz | Bus Drainage Test |  |  | 500 | $\mu \mathrm{A}$ | 0.0V | $\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$ |
| ${ }^{\text {l }} \mathrm{COH}$ | Power Supply Current |  | 28 | 45 | mA | Max | $\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$ |
| ${ }_{\text {cCL }}$ | Power Supply Current |  | 40 | 60 | mA | Max | $\mathrm{V}_{\mathrm{O}}=$ LOW |
| ${ }^{\text {l }} \mathrm{Cz}$ | Power Supply Current |  | 40 | 60 | mA | Max | $\mathrm{V}_{\mathrm{O}}=$ HIGH Z |


| Symbol | Parameter | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Max |  |
| $\mathrm{t}_{\text {PLH }}$ | Propagation Delay |  | 14.5 | 18.5 |  | 19.5 | ns |
| $\mathrm{t}_{\text {PHL }}$ | $\mathrm{A}_{\mathrm{n}}$ to $\mathrm{O}_{\mathrm{n}}$ | 4.0 | 9.5 | 12.0 | 4.0 | 13.0 |  |
| $\mathrm{t}_{\text {PLH }}$ | Propagation Delay | 5.0 | 12.0 | 16.0 | 5.5 | 17.0 | ns |
| $\mathrm{t}_{\text {PHL }}$ | $\overline{\mathrm{E}}$ to $\mathrm{O}_{\mathrm{n}}$ | 4.0 | 7.5 | 9.5 | 4.0 | 10.5 |  |
| ${ }_{\text {tpLH }}$ | Propagation Delay | 7.5 | 14.5 | 21.5 | 4.5 | 22.5 | ns |
| $\mathrm{t}_{\text {PHL }}$ | P to $\mathrm{O}_{\mathrm{n}}$ | 5.0 | 11.0 | 16.5 | 4.5 | 17.5 |  |
| $\mathrm{t}_{\text {pzH }}$ | Output Enable Time | 4.5 | 8.0 | 10.5 | 4.0 | 11.5 | ns |
| tpzL | $\overline{\mathrm{OE}}$ to $\mathrm{O}_{\mathrm{n}}$ | 5.5 | 10.0 | 13.0 | 5.0 | 14.0 |  |
| tphz | Output Disable Time | 2.0 | 4.5 | 6.5 | 2.0 | 7.0 |  |
| tplz | $\overline{\mathrm{OE}}$ to $\mathrm{O}_{\mathrm{n}}$ | 3.0 | 6.5 | 8.5 | 3.0 | 9.5 |  |



Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT devices or systems without the express written approval of the president of fairchild SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
