

April 1988

Revised March 1999

'4F543 Octal Registered Transceiver

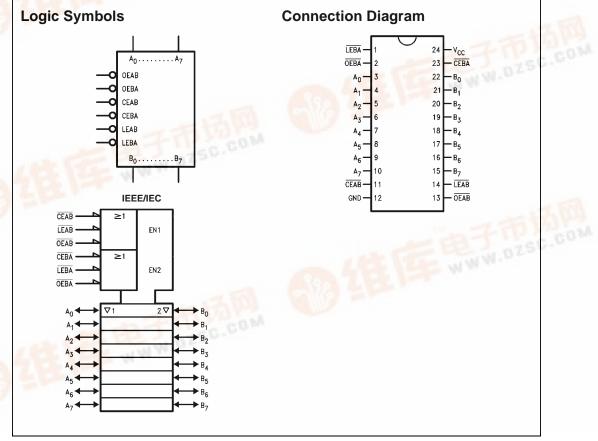
FAIRCHILD

SEMICONDUCTOR

74F543 Octal Registered Transceiver

General Description

The F543 octal transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow. The A outputs are guaranteed to sink 24 mA while the B outputs are rated for 64 mA.


Features

- 8-bit octal transceiver
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- A outputs sink 24 mA
- B outputs sink 64 mA

Ordering Code:

Order Number	Package Number	Package Description
74F543SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F543MSA	MSA24	24-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F543SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the orderin

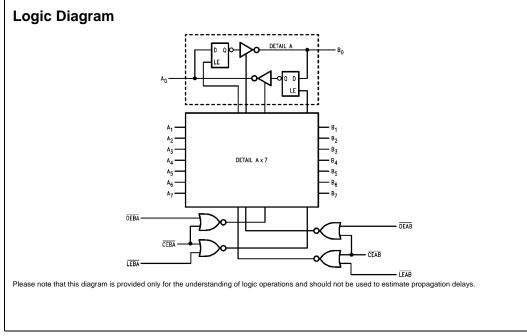
www.fairchildsemi.com

74F543

Unit Loading/Fan Out U.L. Input I_{IH}/I_{IL} Pin Names Description HIGH/LOW Output IOH/IOL OEAB A-to-B Output Enable Input (Active LOW) 1.0/1.0 20 µA/-0.6 mA OEBA B-to-A Output Enable Input (Active LOW) 1.0/1.0 20 µA/-0.6 mA CEAB A-to-B Enable Input (Active LOW) 1.0/2.0 20 µA/-1.2 mA CEBA B-to-A Enable Input (Active LOW) 1.0/2.0 20 µA/-1.2 mA LEAB A-to-B Latch Enable Input (Active LOW) 1.0/1.0 20 µA/-0.6 mA B-to-A Latch Enable Input (Active LOW) LEBA 1.0/1.0 20 µA/-0.6 mA 3.5/1.083 A-to-B Data Inputs or 70 μΑ/–650 μΑ $A_0 - A_7$ B-to-A 3-STATE Outputs 150/40 (33.8) -3 mA/24 mA (20 mA) B-to-A Data Inputs or 3.5/1.083 70 μΑ/-650 μΑ B₀-B₇ A-to-B 3-STATE Outputs 600/106.6 (80) -12 mA/64 mA (48 mA)

Functional Description

The F543 contains two sets of eight D-type latches, with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable (CEAB) input must be LOW in order to enter data from A₀–A₇ or take data from B₀–B₇, as indicated in the Data I/O Control Table. With CEAB LOW, a LOW signal on the A-to-B Latch Enable (LEAB) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With CEAB and OEAB both LOW, the 3-STATE B output buffers are active and reflect the data present at the output of the A latches. Control data flow from B to A is similar, but using the CEBA, LEBA and OEBA inputs.


Data I/O Control Table

	Inputs		Latch	Output		
CEAB	LEAB	OEAB	Status	Buffers		
Н	Х	Х	Latched	High Z		
Х	Н	Х	Latched	—		
L	L	Х	Transparent	-		
Х	Х	Н	_	High Z		
L	Х	L	—	Driving		

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

A-to-B data flow shown; B-to-A flow control is the same, except using $\overline{\text{CEBA}}, \overline{\text{LEBA}}$ and $\overline{\text{OEBA}}$

Absolute Maximum Ratings(Note 1)

Otomo Tomo and the	
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	$-0.5 V$ to $V_{\mbox{\scriptsize CC}}$
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature	
Supply Voltage	

74F543

 $0^{\circ}C$ to $+70^{\circ}C$

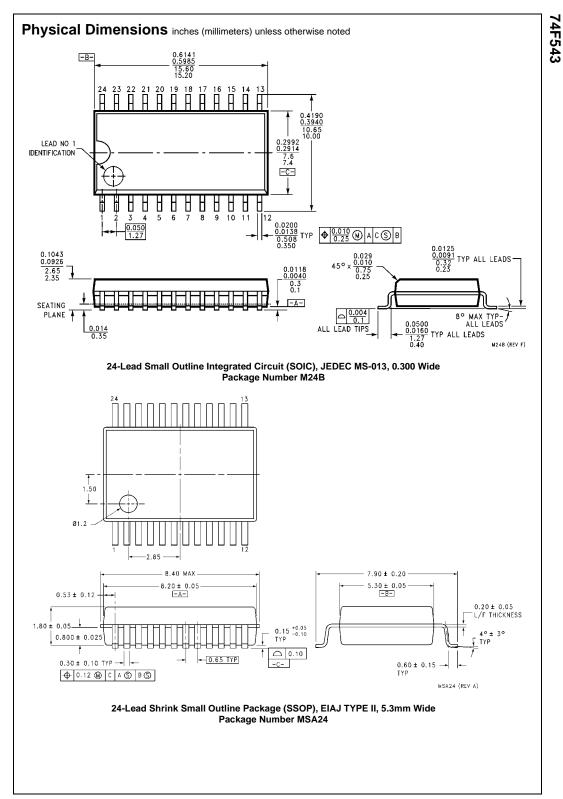
+4.5V to +5.5V

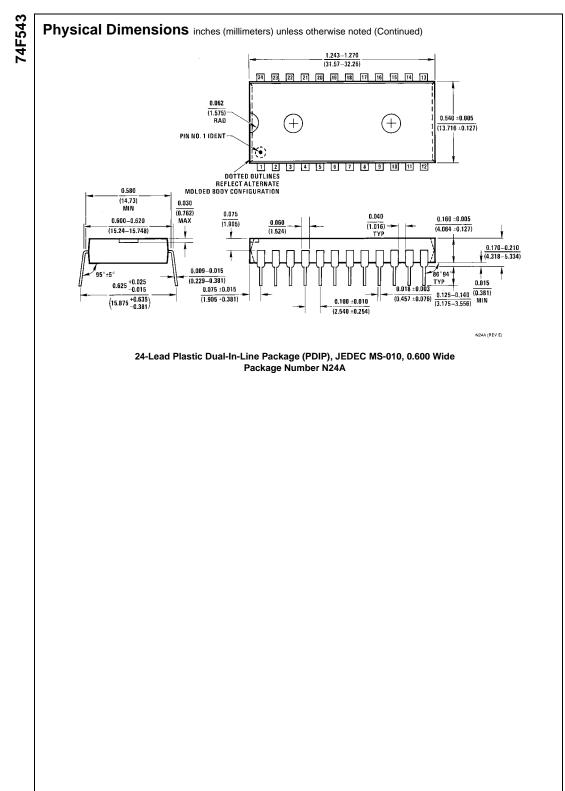
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

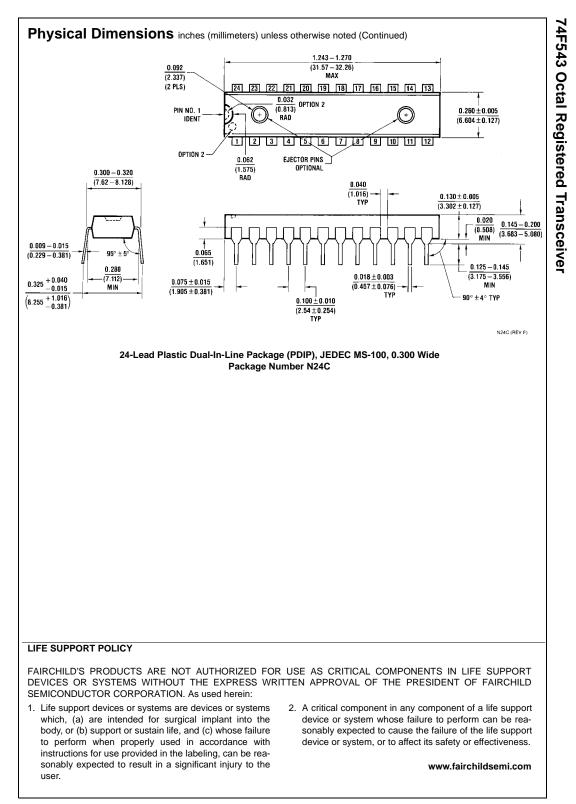
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	10% V _{CC}	2.5					$I_{OH} = -1 \text{ mA} (A_n)$
		10% V _{CC}	2.4					$I_{OH} = -3 \text{ mA} (A_n, B_n)$
		5% V _{CC}	2.7			V	Min	$I_{OH} = -1 \text{ mA} (A_n)$
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA} (A_n, B_n)$
		10% V _{CC}	2.0					$I_{OH} = -15 \text{ mA} (B_n)$
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	$I_{OL} = 24 \text{ mA} (A_n)$
	Voltage	10% V _{CC}			0.55			$I_{OL} = 64 \text{ mA} (B_n)$
I _{IH}	Input HIGH Current				5.0	μΑ	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current				7.0	μΑ	Max	(OEAB, OEBA, LEAB,
	Breakdown Test							LEBA, CEAB, CEBA)
I _{BVIT}	Input HIGH Current				0.5	mA	Max	V _{IN} = 5.5V (A _n , B _n)
	Breakdown (I/O)							
ICEX	Output HIGH				50	μA	Max	$V_{OUT} = V_{CC}$
	Leakage Current							
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test							All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μΑ	0.0	V _{IOD} = 150 mV
	Circuit Current							All Other Pins Grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V (\overline{OEAB}, \overline{OEBA})$
					-1.2			$V_{IN} = 0.5V \ (\overline{CEAB}, \ \overline{CEBA})$
I _{IH} + I _{OZH}	Output Leakage Curren	t			70	μΑ	Max	V _{OUT} = 2.7V (A _n , B _n)
I _{IL} + I _{OZL}	Output Leakage Curren	t			-650	μA	Max	V _{OUT} = 0.5V (A _n , B _n)
I _{OS}	Output Short-Circuit Cu	rrent	-60		-150	mA	Max	$V_{OUT} = 0V(A_n)$
			-100		-225			$V_{OUT} = 0V (B_n)$
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	$V_{OUT} = 5.25V (A_n, B_n)$
I _{CCH}	Power Supply Current			67	100	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			83	125	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current			83	125	mA	Max	V _O = HIGH Z


ი
4
<u>n</u>
뜨
Z


AC Electrical Characteristics


Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $C_L = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	3.0	5.5	7.5	3.0	8.5	
t _{PHL}	Transparent Mode	3.0	5.0	6.5	3.0	7.5	ns
	A _n to B _n or B _n to A _n						
t _{PLH}	Propagation Delay	4.5	8.5	11.0	4.5	12.5	ns
t _{PHL}	LEBA to An	4.5	8.5	11.0	4.5	12.5	
t _{PLH}	Propagation Delay	4.5	8.5	11.0	4.5	12.5	ns
t _{PHL}	LEAB to B _n	4.5	8.5	11.0	4.5	12.5	
t _{PZH}	Output Enable Time						
t _{PZL}	OEBA or OEAB to An or Bn	3.0	7.0	9.0	3.0	10.0	
	CEBA or CEAB to An or Bn	4.0	7.5	10.5	4.0	12.0	ns
t _{PHZ}	Output Disable Time						
t _{PLZ}	OEBA or OEAB to An or Bn	1.0	6.0	8.0	1.0	9.0	
	CEBA or CEAB to An or Bn	2.5	5.5	10.5	2.5	11.5	

AC Operating Requirements

Symbol	Parameter		+25°C = +5.0V	T _A = 0°C to +70°C		Units
		Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	3.0		3.5		
t _S (L)	A _n or B _n to LEBA or LEAB	3.0		3.5		ns
t _H (H)	Hold Time, HIGH or LOW	3.0		3.5		
t _H (L)	A _n or B _n to LEBA or LEAB	3.0		3.5		
t _W (L)	Latch Enable, B to A or	8.0		9.0		ns
	B to A Pulse Width, LOW					

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.