

4-BIT MAGNITUDE COMPARATOR

The MC54/74F85 is a 4-Bit Magnitude Comparator which compares two 4-Bit words (A₀-A₃, B₀-B₃), A₃, B₃ being the most significant inputs. Operation is not restricted to binary codes; the device will work with any monotonic code. Three Outputs are provided: "A greater than B" (0_A > B), "A less than B" (0_A < B), "A equal to B" (0_A = B). Three Expander Inputs, I_A > B, I_A < B, I_A = B, allow cascading without external gates. For proper compare operation, the Expander Inputs to the least significant position must be connected as follows: I_A < B = I_A > B = L, I_A = B = H. For serial (ripple) expansion the 0_A > B, 0_A < B Outputs are connected respectively to the I_A > B and I_A = B inputs of the next most significant comparator, as shown in Figure 1. Refer to applications section of data sheet for high speed method of comparing large words.

- High Impedance NPN Base Inputs for Reduced Loading (20 μ A in HIGH and LOW States)
- Magnitude Comparison of any Binary Words
- Serial or Parallel Expansion Without Extra Gating
- ESD > 4000 Volts

CONNECTION DIAGRAM

MC54/74F85

4-BIT MAGNITUDE COMPARATOR

FAST™ SCHOTTKY TTL

MC74FXXN

MC74FXXD

Plastic

SOIC

GUARANTEED OPERATING RANGES

Symbol Parameter		NYP III	Min	Тур	Max	Unit
VCC	Supply Voltage	54, 74	4.5	5.0	5.5	V
T_A	Operating Ambient Temperature Range	54	- 55	25	125	°C
	WWW.	74	0	25	70	
IOH	Output Current — High	54, 74			-1.0	mA
loL	Output Current — Low	54, 74			20	mA

MC54/74F85

FUNCTION TABLE

Comparing Inputs				Ex	pansion Inpu	ts	Outputs			
A ₃ , B ₃	A ₂ , B ₂	A ₁ , B ₁	A ₀ , B ₀	I _{A > B}	IA < B	IA = B	A > B	A < B	A = B	
A ₃ > B ₃	Х	Х	Х	Х	Х	Х	Н	L	L	
A ₃ < B ₃	Х	Х	Х	Х	Х	Х	L	Н	L	
A ₃ = B ₃	A ₂ > B ₂	Х	Х	Х	Х	Х	Н	L	L	
A ₃ = B ₃	A ₂ < B ₂	Х	Х	Х	Х	Х	L	Н	L	
A ₃ = B ₃	$A_2 = B_2$	A ₁ > B ₁	Х	Х	Х	Х	Н	L	L	
$A_3 = B_3$	$A_2 = B_2$	A ₁ < B ₁	Х	Х	Х	Х	L	Н	L	
A ₃ = B ₃	$A_2 = B_2$	$A_1 = B_1$	$A_0 > B_0$	Х	Х	Х	Н	L	L	
A ₃ = B ₃	A ₂ = B ₂	$A_1 = B_1$	$A_0 < B_0$	Х	Х	Х	L	Н	L	
A ₃ = B ₃	A ₂ = B ₂	A ₁ = B ₁	$A_0 = B_0$	Н	L	L	Н	L	L	
A ₃ = B ₃	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	L	Н	L	L	Н	L	
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	L	L	Н	L	L	Н	
A ₃ = B ₃	A ₂ = B ₂	A ₁ = B ₁	$A_0 = B_0$	Х	Х	Н	L	L	Н	
A ₃ = B ₃	A ₂ = B ₂	$A_1 = B_1$	$A_0 = B_0$	Н	Н	L	L	L	L	
A ₃ = B ₃	A ₂ = B ₂	A ₁ = B ₁	$A_0 = B_0$	L	L	L	Н	Н	L	

H = HIGH Voltage Level

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits						
Symbol	Parameter			Тур	Max	Unit	Test Conditions		
VIН	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage		
V _{IL}	Input LOW Voltage				0.8	V	Guaranteed Input LOW Voltage		
VIK	Input Clamp Diode Voltage				-1.2	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$		
Vон	Output HIGH Voltage	54, 74	2.5			V	$I_{OH} = -1.0 \text{ mA}$ $V_{CC} = 4.50$		
		74	2.7					V _{CC} = 4.75 V	
VOL	Output LOW Voltage				0.5	V	I _{OL} = 20 mA, V _{CC} = MIN		
lН	Input HIGH Current				20	μΑ	$V_{CC} = MAX, V_{IN} = 2.7 V$		
					0.1	mA	V _{CC} = 0 V, V _{IN} = 7.0 V		
IIL	Input LOW Current				-20	μΑ	$V_{CC} = MAX, V_{IN} = 0.5 V$		
los	Output Short Circuit Current (Note 2)		-60		-150	mA	V _{CC} = MAX, V _{OUT} = 0 V		
	Total Supply Current						V _{CC} = MAX		
ICC	HIGH V _{IN} = HIGH				50	mA			
	LOW $A_n = B_n = I_{A-B} = GND$: $I_{A>B} = I_{A$	_{<b< sub=""> = 4.5 V</b<>}			54				

L = LOW Voltage Level
X = Don't Care

^{1.} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

^{2.} Not more than one output should be shorted at a time, nor for more than 1 second.

MC54/74F85

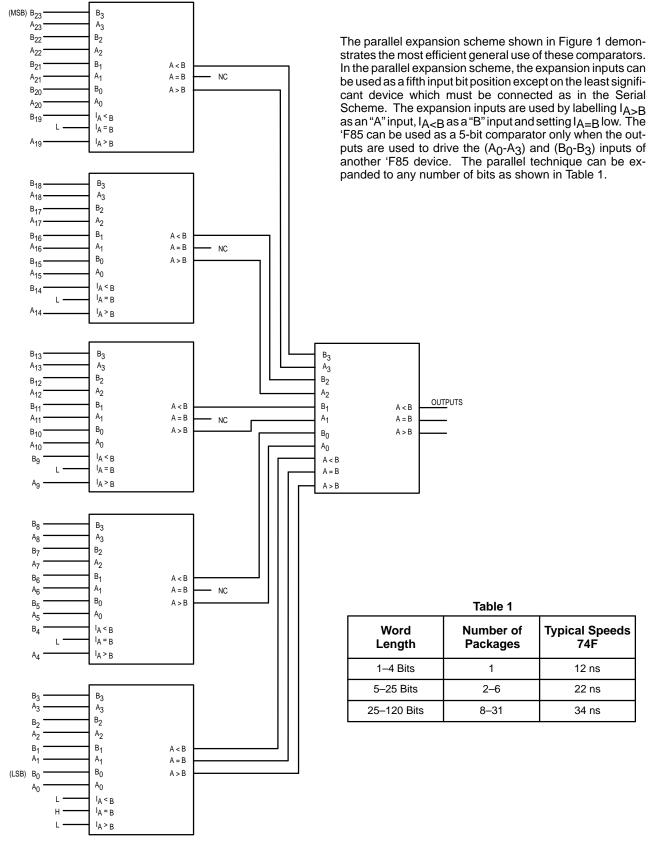
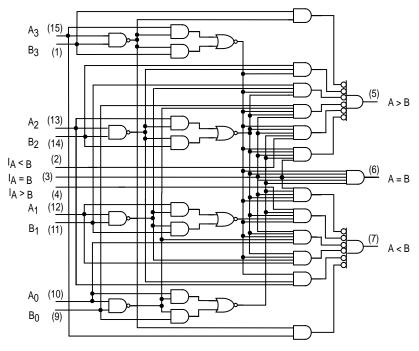


Figure 1. Comparison of Two 24-Bit Words


MC54/74F85

AC ELECTRICAL CHARACTERISTICS

		54/74F T _A = +25°C V _{CC} = +5.0 V C _L = 50 pF		5	i4F	74F T _A = 0°C to + 70°C V _{CC} = 5.0 V ± 10% C _L = 50 pF			
				V _{CC} = 5	C to +125°C .0 V ± 10% : 50 pF				
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit	
^t PLH	A or B Input to	6.0	11	5.5	14	5.5	13		
^t PHL	A < B, A > B Output	6.0	14	5.5	16.5	5.5	15.5	ns	
^t PLH	A or B Input to	5.5	11.5	5.0	15	5.0	14		
^t PHL	A = B Output	7.0	14	6.5	15.5	6.5	14.5	ns	
^t PLH	IA <b and="" ia="B" input<="" td=""><td>3.0</td><td>7.5</td><td>2.5</td><td>10</td><td>2.5</td><td>9.0</td><td></td>	3.0	7.5	2.5	10	2.5	9.0		
^t PHL	to A>B Output	3.0	9.0	2.5	11	2.5	10	ns	
^t PLH	I _{A=B} Input to	2.5	7.0	2.0	10	2.0	9.0		
^t PHL	A = B Output	3.5	10	2.5	13	2.5	12	ns	
^t PLH	I _{A>B} and I _{A=B} Input	3.0	8.0	3.0	10.5	3.0	9.5		
^t PHL	to A <b output<="" td=""><td>3.0</td><td>9.0</td><td>2.0</td><td>10.5</td><td>2.0</td><td>9.5</td><td>ns</td>	3.0	9.0	2.0	10.5	2.0	9.5	ns	

The expansion inputs $I_{A>B}$, $I_{A=B}$, and $I_{A<B}$ are the least significant bit positions. When used for series expansion, the A>B, A=B, and A<B outputs of the least significant word are connected to the corresponding $I_{A>B}$, $I_{A=B}$, and $I_{A<B}$ inputs of the next higher stage. Stages can be added in this manner to any length, but a propagation delay penalty of about 15 ns

is added with each additional stage. For proper operation the expansion inputs of the least significant word should be tied as follows: $I_{A>B} = LOW$, $I_{A=B} = HIGH$, and $I_{A<B} = LOW$.

NOTE:

This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 2. Logic Diagram