

June 2004

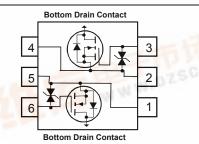
FDC6000NZ

FDC6000NZ

Dual N-Channel 2.5V Specified PowerTrench[®] MOSFET

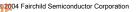
General Description

This N-Channel 2.5V specified MOSFET is a rugged gate version of Fairchild's Semiconductor's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V - 12V). Packaged in FLMP SSOT-6, the R_{DS(ON)} and thermal properties of the device are optimized for battery power management applications.

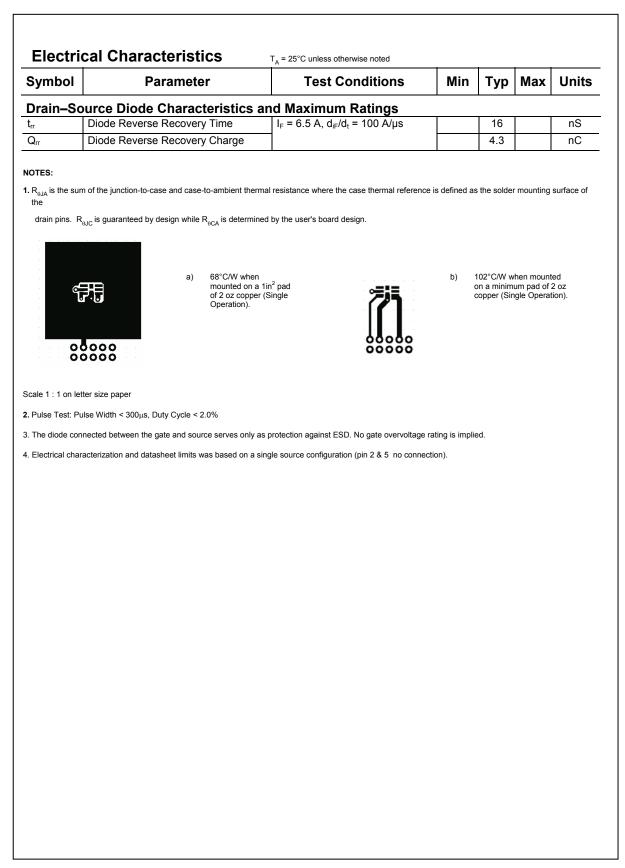

Applications

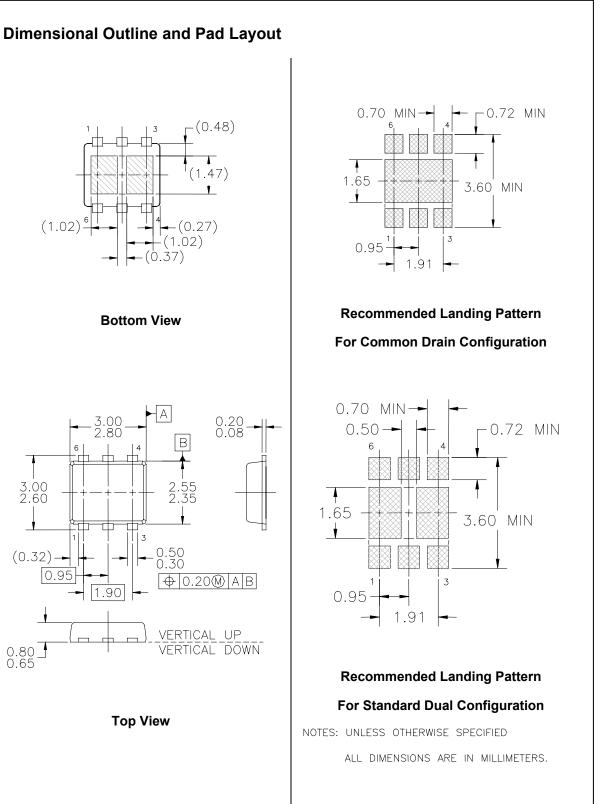
- Battery management/Charger Application
- Load switch

Features


- 6.5 A, 20 V $R_{DS(ON)} = 20 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 28 \text{ m}\Omega @ V_{GS} = 2.5 \text{ V}$
- ESD protection diode (note 3)
- High performance trench technology for extremely low R_{DS(ON)}
- FLMP SSOT-6 package: Enhanced thermal performance in industry-standard package size

MOSFET Maximum Ratings T_A=25°C unless otherwise noted


Symbol	Parameter				Ratings	Units
V _{DSS}	Drain-Sourc	e Voltage			20	V
V _{GSS}	Gate-Source	e Voltage			±12	V
ID	Drain Currei	nt – Continuous	(Note	1a)	7.3	A
		- Pulsed			20	C.C
P _D	Power Dissi	pation for Dual Operation	(Note	1a)	1.6	W
	Power Dissi	pation for Single Operatio	n (Note	1a)	1.8	
			(Note	1b)	1.2	
T _J , T _{STG}	Operating a	Operating and Storage Junction Temperature Range		ge	-55 to +150	°C
Therma	l Charact	eristics	- Barre			
R _{0JA}	Thermal Resistance, Junction-to-Ambient (Note 1a)			1a)	68	°C/W
R _{0Jc}	Thermal Resistance, Junction-to-Case (Note 1a)			1a)	1	
Packag	e Marking	g and Ordering I	nformat	ion		
Device Marking		Device	Reel Size		Tape width	Quantity
	.0NZ FDC6000NZ 7"					



dzsc.com

FDC6000NZ Rev E1 (W)

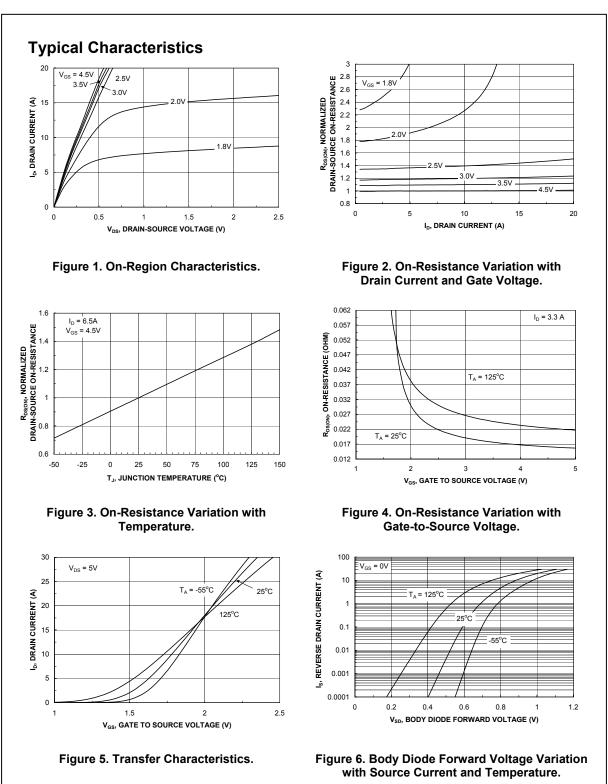
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_{D} = 250 \mu A$	20		1	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		14		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16 V$, $V_{GS} = 0 V$			1	μA
I _{GSS}	Gate–Body Leakage	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$			± 10	μA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	0.6	0.9	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		-4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{GS}=4.5 \ V, I_{D}=6.5 \ A \\ V_{GS}=4.0 \ V, I_{D}=6.4 \ A \\ V_{GS}=3.1 \ V, I_{D}=6.3 \ A \\ V_{GS}=2.5 \ V, I_{D}=5.5 \ A \\ V_{GS}=4.5 \ V, \ I_{D}=6.5 \ A, \ T_{J}=125^{\circ} C \end{array} $		16.5 16.8 19.2 22.5 22.8	20 21 24 28 30	mΩ
g _{FS}	Forward Transconductance	$V_{DS} = 5 V$, $I_{D} = 6.5 A$		30		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 10 V$, $V_{GS} = 0 V$, f = 1.0 MHz		840		pF
Coss	Output Capacitance			210		pF
C _{rss}	Reverse Transfer Capacitance			100		pF
R _G	Gate Resistance	V_{GS} = 15 mV, f = 1.0 MHz		2.3		Ω
Switchin	g Characteristics (Note 2)					
$t_{d(on)}$	Turn–On Delay Time	$V_{DD} = 10 V,$ $I_D = 1 A,$ $V_{GS} = 4.5 V,$ $R_{GEN} = 6 \Omega$		10	20	ns
t _r	Turn–On Rise Time			15	27	ns
$t_{\text{d(off)}}$	Turn–Off Delay Time			18	32	ns
t _f	Turn–Off Fall Time			9	18	ns
Qg	Total Gate Charge	V_{DS} = 10 V, I_{D} = 6.5 A, V_{GS} = 4.5 V		8	11	nC
Q _{gs}	Gate–Source Charge			1.5		nC
Q_{gd}	Gate-Drain Charge			2.1		nC
Drain-So	ource Diode Characteristics a	and Maximum Ratings				
Is	Maximum Continuous Drain–Source Diode Forward Current				1.25	А
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 1.25A$ (Note 2)		0.7	1.2	V

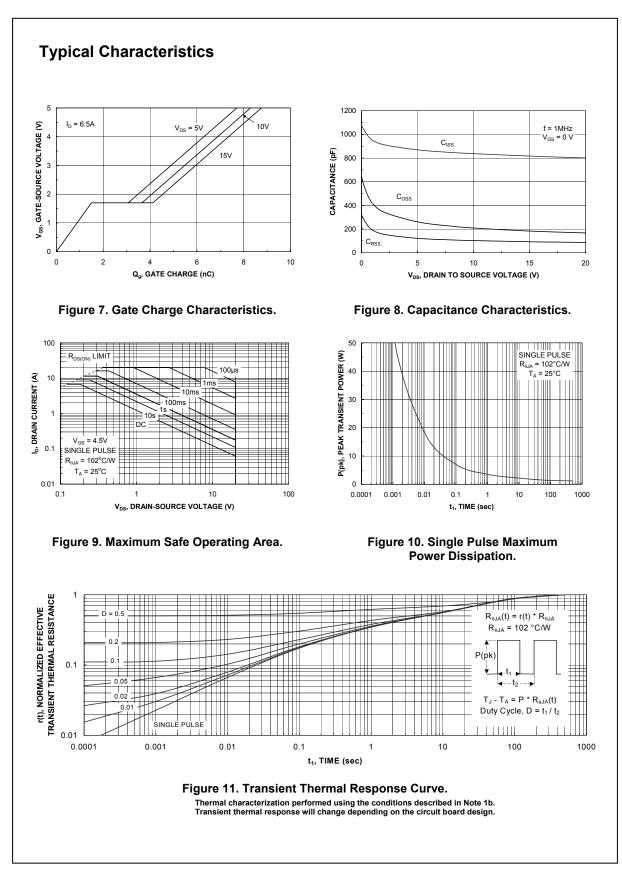
(1.02) -

3.00 2.60

(0.32) -

0.80 0.65


0.95


3.00 2.80

 \Box

1.90

3

TRADEMARKS					
•	gistered and unregistered in exhaustive list of all such		iconductor owns or is author	ized to use and is	
ACEx [™] ActiveArray [™] Bottomless [™] CoolFET [™] CROSSVOLT [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™] FACT [™] FACT Quiet Seri Across the board The Power France	d. Around the world.™	ISOPLANAR [™] LittleFET [™] MICROCOUPLER [™] MicroFET [™] MicroPak [™] MICROWIRE [™] MSX [™] MSXPro [™] OCX [™] OCX [™] OCXPro [™] OPTOLOGIC [®] OPTOPLANAR [™] PACMAN [™]	Power247 TM PowerSaver TM PowerTrench [®] QFET [®] QS TM QT Optoelectronics TM Quiet Series TM RapidConfigure TM RapidConnect TM μ SerDes TM SILENT SWITCHER [®] SMART START TM SPM TM	SuperFET TM SuperSOT TM -3 SuperSOT TM -6 SuperSOT TM -8 SyncFET TM TinyLogic [®] TINYOPTO TM TruTranslation TM UHC TM UltraFET [®] VCX TM	
Programmable Active Droop™		POP™	Stealth™		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.