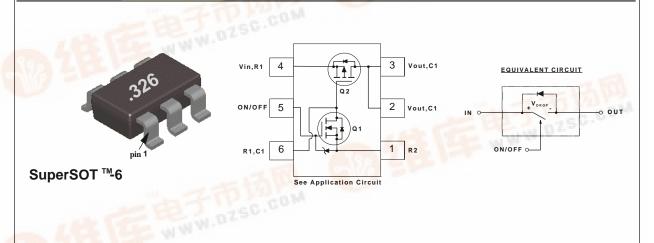


August 1998

FDC6326L Integrated Load Switch


General Description

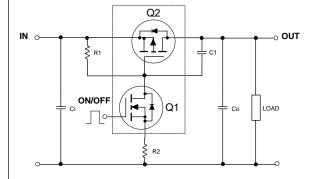
This device is particularly suited for compact power management in portable electronic equipment where 3V to 20V input and 1.8A output current capability are needed. This load switch integrates a small N-Channel power MOSFET (Q1) which drives a large P-Channel power MOSFET (Q2) in one tiny SuperSOTTM-6 package.

Features

- V_{DROP} =0.20V @ V_{IN} =12V, I_{L} =1.5A. $R_{DS(ON)}$ = 0.125 Ω V_{DROP} =0.20V @ V_{IN} =5V, I_{L} =1A. $R_{DS(ON)}$ = 0.20 Ω .
- SuperSOTTM-6 package design using copper lead frame for superior thermal and electrical capabilities.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	FDC6326L	Units
V _{IN}	Input Voltage Range	3 - 20	V
V _{ON/OFF}	On/Off Voltage Range	2.5 - 8	V
I _L	Load Current - Continuous (Note 1)	1.8	Α
	- Pulsed (Note 1 & 3)	5	
P_{D}	Maximum Power Dissipation (Note 2)	0.7	W
T _J ,T _{STG}	Operating and Storage Temperature Range	-55 to 150	
ESD	Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100pf/1500Ohm)	6	kV
THERMA	L CHARACTERISTICS		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 2)	180	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 2)	60	°C/W


Electrical Characteristics (T _A = 25°C unless otherwise noted)									
Symbol	Parameter	Conditions	Min	Тур	Max	Units			
OFF CHA	RACTERISTICS								
I _{FL}	Forward Leakage Current	V _{IN} = 20 V, V _{ON/OFF} = 0 V			1	μΑ			
ON CHAR	ACTERISTICS (Note 3)								
V_{DROP}	Conduction Voltage Drop	$V_{IN} = 12 \text{ V}, \ V_{ON/OFF} = 3.3 \text{ V}, \ I_{L} = 1.5 \text{ A}$		0.15	0.2	V			
		$V_{IN} = 5 \text{ V}, \ V_{ONOFF} = 3.3 \text{ V}, \ I_{L} = 1 \text{ A}$		0.14	0.2				
R _{DS(ON)}	Q ₂ - Static On-Resistance	$V_{GS} = -12 \text{ V}, \ I_D = -1.9 \text{ A}$		0.095	0.125	Ω			
		$V_{GS} = -5 \text{ V}, I_{D} = -1.5 \text{ A}$		0.14	0.2				
I _L	Load Current	$V_{DROP} = 0.125 \text{ V}, V_{IN} = 12 \text{ V}, V_{ON/OFF} = 3.3 \text{ V}$	1			Α			
		$V_{DROP} = 0.20 \text{ V}, V_{IN} = 5 \text{ V}, V_{ON/OFF} = 3.3 \text{ V}$	1						

Notes:

- 1. V_{IN} =20V, V_{ONOFF} =8V, T_A =25°C
- 2. R_{But} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{Buc} is guaranteed by design while R_{Buck} is determined by the user's board design.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FDC6326L Load Switch Application

APPLICATION CIRCUIT

External Component Recommendation

First select R2, $100 - 1k\Omega$, for Slew Rate control.

 $C1 \le 1000$ pF can be added in addition to R2 for further In-rush current control.

Then select R1 such that R1/R2 ratio maintains between 10 - 100. R1 is required to turn Q2 off.

For SPICE simulation, users can download a "FDC6326L.MOD" Spice model from Fairchild Web Site at www.fairchildsemi.com

Typical Electrical Characteristics ($T_A = 25$ $^{\circ}$ C unless otherwise noted)

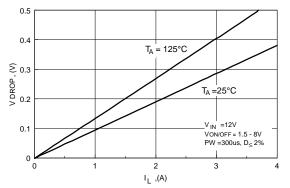


Figure 1. Conduction Voltage Drop Variation with Load Current.

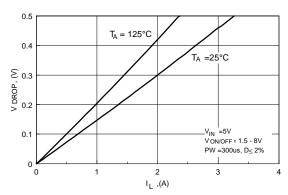


Figure 2. Conduction Voltage Drop Variation with Load Current.

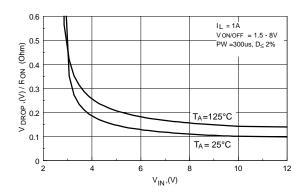
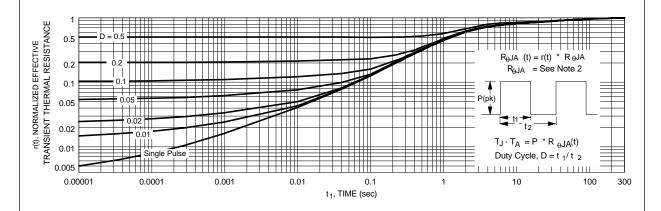
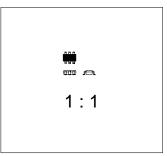
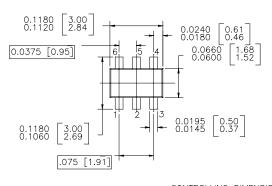


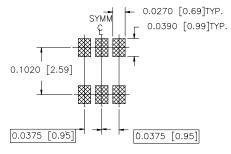
Figure 3. On-Resistance Variation with Input Voltage.



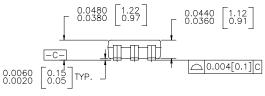

Figure 4. Transient Thermal Response Curve.

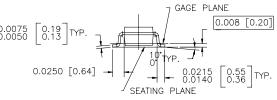
Thermal characterization performed on the conditions described in Note 2.


SuperSOT™-6 (FS PKG Code 31, 33)



Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]


Part Weight per unit (gram): 0.0158



LAND PATTERN RECOMMENDATION

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

NOTES: UNLESS OTHERWISE SPECIFIED

1.0 STANDARD LEAD FINISH: 150 MICROINCHES 93.81 MICROMETERS) MINIMUM TIN / LEAD (SOLDER) ON COPPER.

2.0 NO JEDEC REGISTRATION AS OF JULY 1996

SUPER SOT 6 LEADS

© 1998 Fairchild Semiconductor Corporation 9/98 Rev A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{ACEx^{\mathsf{TM}}} & \mathsf{ISOPLANAR^{\mathsf{TM}}} \\ \mathsf{CoolFET^{\mathsf{TM}}} & \mathsf{MICROWIRE^{\mathsf{TM}}} \\ \end{array}$

CROSSVOLTTM POPTM

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The data sheet is printed for reference information only.