

FDC640P

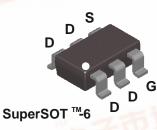
August 2000

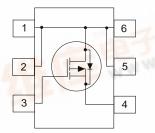
SEMICONDUCTOR IM

FDC640P

P-Channel 2.5V Specified PowerTrench[™] MOSFET

General Description


This P-Channel 2.5V specified MOSFET is produced in a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications for a wide range of gate drive voltages.


Applications

- Load switch
- Battery protection
- Power management

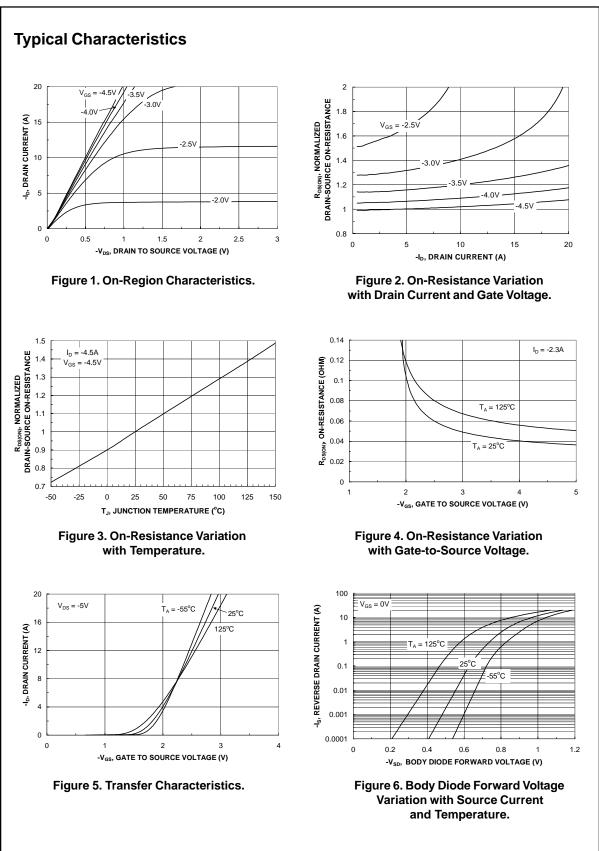
Features

- -4.5 A, -20 V. $R_{DS(ON)} = 0.050 \Omega @ V_{GS} = -4.5 V$ $R_{DS(ON)} = 0.077 \Omega @ V_{GS} = -2.5 V$
- Rugged gate rating (±12V).
- High performance trench technology for extremely low R_{DS(ON)}.
- SuperSOT[™]-6 package: small footprint (72% smaller than standard SO-8); low profile (1mm thick).

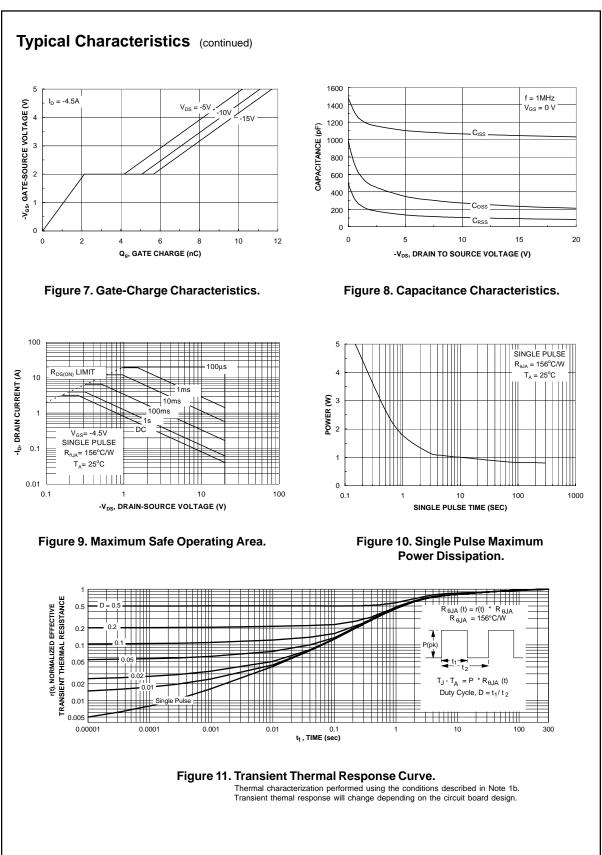
Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		<u>+</u> 12	V
I _D	Drain Current - Continuous	(Note 1a)	-4.5	A
	Drain Current - Pulsed		-20	1.0 1.0 -
PD	Power Dissipation for Single Operation	(Note 1a)	1.6	W
		(Note 1b)	0.8	
T _J , T _{stg}	Operating and Storage Junction Temperature Range		-55 to +150	∘C

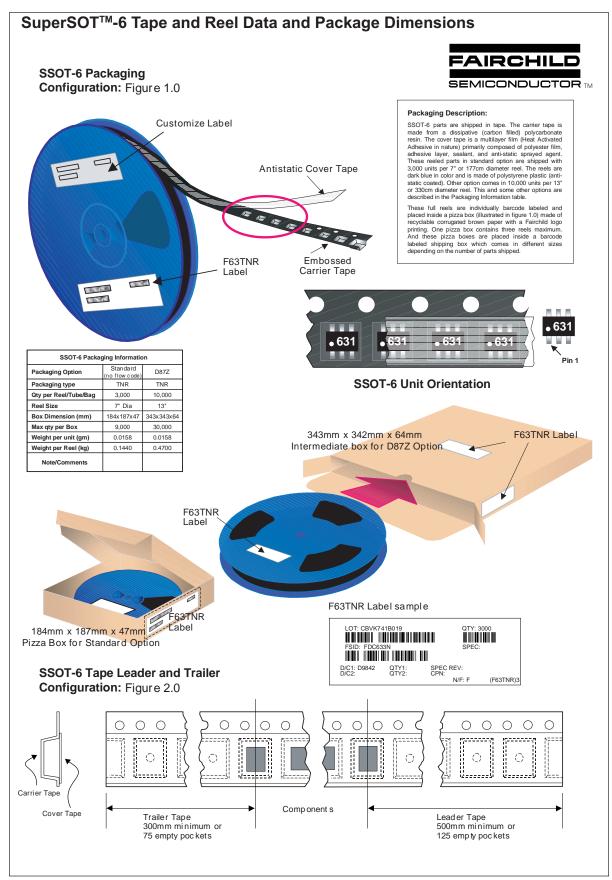
R_{BJA} Thermal Resistance, Junction-to-Ambient (Note 1a) 78 °C/W R_{BJC} Thermal Resistance, Junction-to-Case (Note 1) 30 °C/W

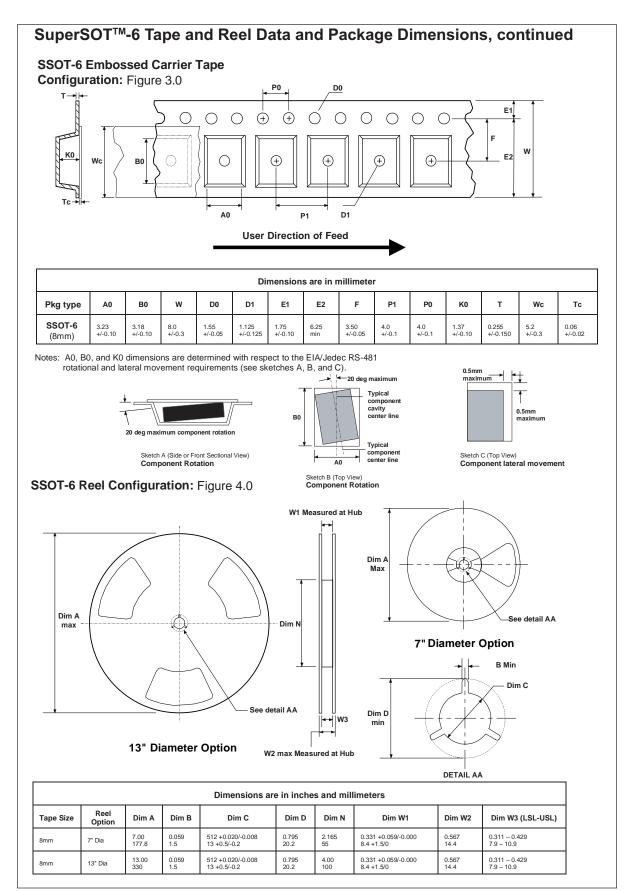

Package Outlines and Ordering Information

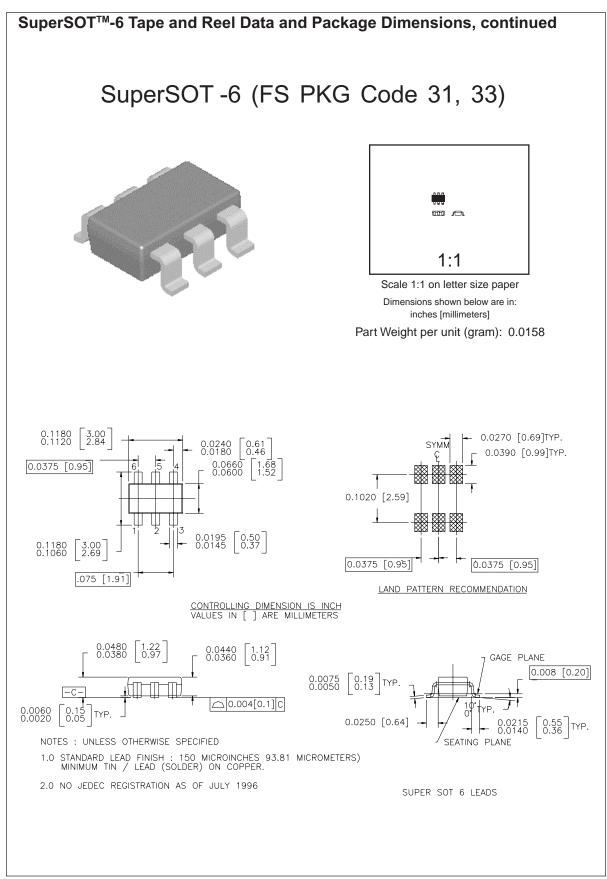
Device Marking	Device	Reel Size	Tape Width	Quantity
.640	FDC640P	7"	8mm	3000 units


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$	-20			V
	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-17		mV/∘C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			-1	μA
GSSF	Gate-Body Leakage Current, Forward	V _{GS} = 12 V, V _{DS} = 0 V			100	nA
GSSR	Gate-Body Leakage Current, Reverse	V _{GS} = -12 V, V _{DS} = 0 V			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	-0.6	-1	-1.5	V
<u>Δ</u> VGS(th) ΔT,J	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C		3		mV/∘C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 V$, $I_D = -4.5 A$ $V_{GS} = -4.5V$, $I_D = -4.5A$, $T_J=125^{\circ}C$ $V_{GS} = -2.5 V$, $I_D = -3.6 A$		0.037 0.054 0.060	0.05 0.08 0.077	Ω
I _{D(on)}	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$	-10			А
9 _{FS}	Forward Transconductance	$V_{DS} = -5 V, I_{D} = -4.5 A$		13		S
Dynamio	Characteristics		•	•		
C _{iss}	Input Capacitance	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		1065		pF
Coss	Output Capacitance			270		pF
C _{rss}	Reverse Transfer Capacitance			105		pF
						·
	Turn-On Delay Time	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ A},$		8.5	17	ns
t _r	Turn-On Rise Time	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		10	18	ns
t _{d(off)}	Turn-Off Delay Time			55	90	ns
t _f	Turn-Off Fall Time			25	40	ns
Q _g	Total Gate Charge	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -4.5 \text{ A},$		10	14	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -4.5 V,$		2.1		nC
Q _{gd}	Gate-Drain Charge			2.9		nC
0		<u> </u>		2.0		
	Durce Diode Characteristics and Maximum Continuous Drain-Source Did				12	٨
s				0.75	-1.3	A V
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = -1.3 A$ (Note 2)		-0.75	-1.2	V

b) 156°C/W when mounted on a minimum pad.


2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%




FDC640P

FDC640P

TRADEWIARKS			
The following are registered ar not intended to be an exhaustiv	nd unregistered trademarks Fairchild Sove list of all such trademarks.	emiconductor owns or is authorized t	o use and is
ACEx [™] Bottomless [™] CoolFET [™] CROSSVOLT [™] DOME [™] E ² CMOS [™] EnSigna [™] FACT [™] FACT Quiet Series [™] FAST [®]	FASTr™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ MICROWIRE™ OPTOLOGIC™ OPTOPLANAR™ POP™ PowerTrench®	QFET™ QS™ QT Optoelectronics™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™	VCX™
FAST®	Powerirench®	UHC™	

DISCLAIMER

TRADEMARKS

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition				
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.				