
SEMICONDUCTOR®

FDD6680AS 30V N-Channel PowerTrench[®] SyncFET[™] General Description

The FDD6680AS is designed to replace a single MOSFET and Schottky diode in synchronous DC:DC power supplies. This 30V MOSFET is designed to maximize power conversion efficiency, providing a low $R_{DS(ON)}$ and low gate charge. The FDD6680AS includes an integrated Schottky diode using Fairchild's monolithic SyncFET technology. The performance of the FDD6680AS as the low-side switch in a synchronous rectifier is indistinguishable from the performance of the FDD6680A in parallel with a Schottky diode.

Applications

- DC/DC converter
- Low side notebook

Features

• 55 A, 30 V $R_{DS(ON)}$ max= 10.5 m Ω @ V_{GS} = 10 V $R_{DS(ON)}$ max= 13.0 m Ω @ V_{GS} = 4.5 V

FDD6680AS

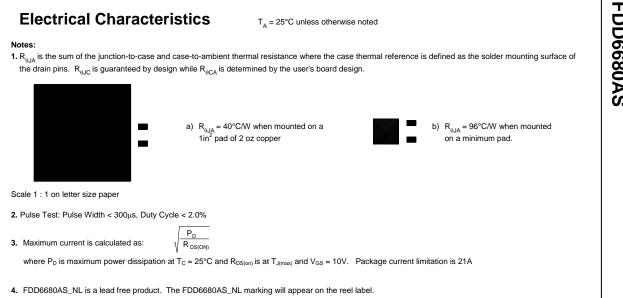
December 2004

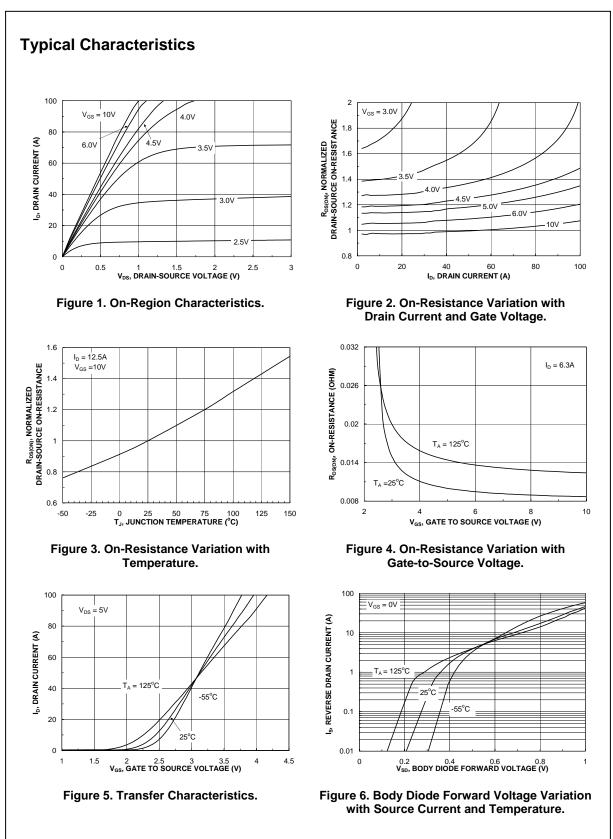
- Includes SyncFET Schottky body diode
- Low gate charge (21nC typical)
- High performance trench technology for extremely low R_{DS(ON)}

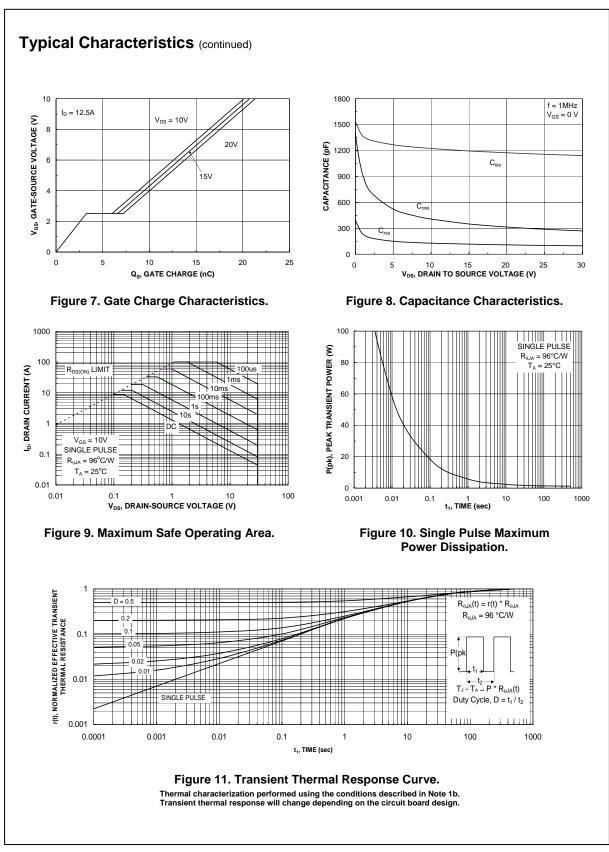
D

High power and current handling capability

Absolute Maximum Ratings TA=25°C unless otherwise noted

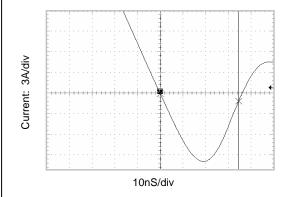

Symbol	Parameter			Ratings	Unit s
V _{DSS}	Drain-S	ource Voltage		30	V
V _{GSS}	Gate-Source Voltage			±20	V
ID	Drain C	urrent – Continuous	(Note 3)	55	А
		- Pulsed	(Note 1a)	100	
PD	Power	Dissipation	(Note 1)	60	W
			(Note 1a)	3.1	0750
			(Note 1b)	1.3	
T _J , T _{STG}	Operati	ating and Storage Junction Temperature Range		-55 to +150	°C
	1		(Aleta 4)	2.1	°C/W
R _{0JC}	Thermal Resistance, Junction-to-Case (Note 1)			40	°C/W
R _{eja}	Thermal Resistance, Junction-to-Ambient (Note 1a) Thermal Resistance, Junction-to-Ambient (Note 1b)		· · · · ·	96	
Packag	e Mar	king and Orderin	g Information		
Device Marking		Device	Reel Size	Tape width	Quantity
FDD668	0AS	FDD6680AS	13"	16mm	2500 units
FDD668	0AS	FDD6680AS_NL (Note 4)	13"	16mm	2500 units


2004 Fairchild Semiconductor Corporation

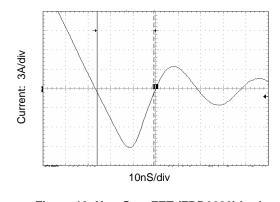

.dzsc.com

FDD6680AS Rev A(X)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	urce Avalanche Ratings (No	te 2)				
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, $V_{DD} = 15 V$,		54	205	mJ
I _{AR}	Drain-Source Avalanche Current	I _D =13.5A			13.5	Α
	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 1 mA$	30			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 1 mA, Referenced to 25°C		29		mV/°C
	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$			500	μA
I _{GSS}	Gate–Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	1	1.4	3	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage	$I_D = 1 \text{ mA}, \text{ Referenced to } 25^{\circ}\text{C}$	-	-3	-	mV/°C
ΔTJ	Temperature Coefficient					
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 10 \text{ V}, \qquad I_D = 12.5 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \qquad I_D = 10 \text{ A}$		8.6 10.3	10.5 13.0	mΩ
		$V_{GS} = 4.3 \text{ V}, T_D = 10 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 12.5 \text{ A}, T_J = 125^{\circ}\text{C}$		10.3	16.0	
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	50	_		A
g _{FS}	Forward Transconductance	$V_{DS} = 15 \text{ V}, \qquad I_D = 12.5 \text{ A}$		44		S
-	Characteristics			I		
Dynamic		V 15.V V 0.V				
C _{iss}	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$, f = 1.0 MHz		1200		pF
C _{oss}	Output Capacitance			350		pF
C _{rss}	Reverse Transfer Capacitance			120		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, f = 1.0 \text{ MHz}$		1.6		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time			10	20	ns
tr	Turn–On Rise Time	$V_{\text{DD}} = 15 \text{ V}, \qquad I_{\text{D}} = 1 \text{ A},$		6	12	ns
t _{d(off)}	Turn–Off Delay Time	$V_{\text{GS}} = 10 \text{ V}, \qquad \text{R}_{\text{GEN}} = 6 \ \Omega$		28	45	ns
t _f	Turn–Off Fall Time			12	22	ns
t _{d(on)}	Turn–On Delay Time			14	25	ns
tr	Turn–On Rise Time	$V_{DD} = 15 \text{ V}, \qquad I_D = 1 \text{ A},$		13	23	ns
t _{d(off)}	Turn–Off Delay Time	$V_{\text{GS}} = 4.5 \text{ V}, \qquad \text{R}_{\text{GEN}} = 6 \ \Omega$		20	32	ns
t _f	Turn–Off Fall Time			11	20	ns
ג _{g(TOT)}	Total Gate Charge at Vgs=10V			21	29	nC
ک ^و	Total Gate Charge at Vgs=5V	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 12.5 \text{ A}$		11	15	nC
Ω _{gs}	Gate–Source Charge			3		nC
J _{gd}	Gate–Drain Charge			4		nC
Drain-So	urce Diode Characteristics	and Maximum Ratings				•
ls	Maximum Continuous Drain-Source	ce Diode Forward Current			4.4	A
V _{SD}	Drain–Source Diode Forward Voltage	$ \begin{array}{ll} V_{GS} = 0 \ V, & I_S = 4.4 \ A & (\text{Note 2}) \\ V_{GS} = 0 \ V, & I_S = 7 \ A & (\text{Note 2}) \end{array} $		0.5 0.6	0.7	V
t _{rr}	Diode Reverse Recovery Time	$I_F = 12.5A,$ $d_{iF}/d_t = 300 \text{ A}/\mu \text{s}$ (Note 3)		17		nS
Q _{rr}	Diode Reverse Recovery Charge	1 , , , , , , , , , , , , , , , , , , ,		11		nC



Typical Characteristics (continued)


SyncFET Schottky Body Diode Characteristics

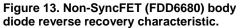

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 12 shows the reverse recovery characteristic of the FDD6680AS.

Figure 12. FDD6680AS SyncFET body diode reverse recovery characteris

For comparison purposes, Figure 13 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDD6680).

Schottky barrie diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

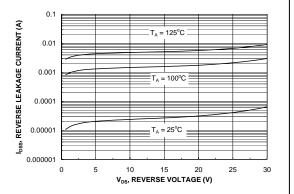
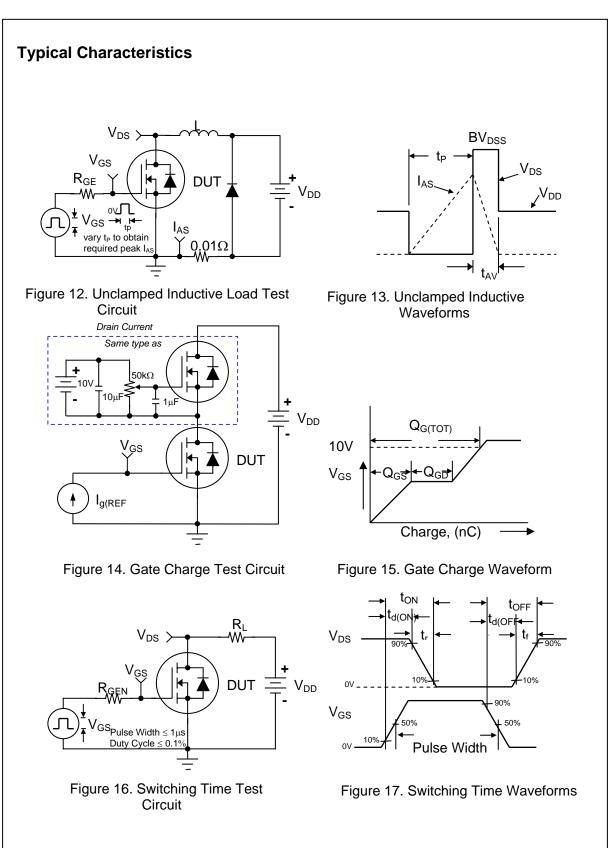



Figure 14. SyncFET body diode reverse leakage versus drain-source voltage and temperature.

TRADEMARKS					
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.					
ACEx™	FAST®	IntelliMAX™	POP™	SPM™	
ActiveArray™	FASTr™	ISOPLANAR™	Power247™	Stealth™	
Bottomless™	FPS™	LittleFET™	PowerEdge™	SuperFET™	
CoolFET™	FRFET™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3	
CROSSVOLT™	GlobalOptoisolator™	MicroFET™	PowerTrench [®]	SuperSOT™-6	
DOME™	GTO™	MicroPak™	QFET [®]	SuperSOT™-8	
EcoSPARK™	HiSeC™	MICROWIRE™	QS™	SyncFET™	
E²CMOS™	l²C™	MSX™	QT Optoelectronics [™]	TinyLogic [®]	
EnSigna™	<i>i-Lo</i> ™	MSXPro™	Quiet Series [™]	TINYOPTO™	
FACT™	ImpliedDisconnect™	OCX™	RapidConfigure™	TruTranslation™	
FACT Quiet Seri	es™	OCXPro™	RapidConnect™	UHC™	
Across the board	d. Around the world.™	OPTOLOGIC [®]	μSerDes™	UltraFET®	
The Power Fran		OPTOPLANAR™	SILENT SWITCHER®	UniFET™	
Programmable A	Active Droop™	PACMAN™	SMART START™	VCX™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.