捷多邦,专业PCB打样工厂,24小时加急出货

April 2001

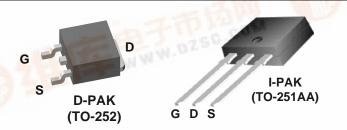
FDD6692/FDU6692

SEMICONDUCTOR TM

FDD6692/FDU6692

30V N-Channel PowerTrench[®] MOSFET

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low RDS(ON) and fast switching speed.

Applications

- DC/DC converter
- Motor drives

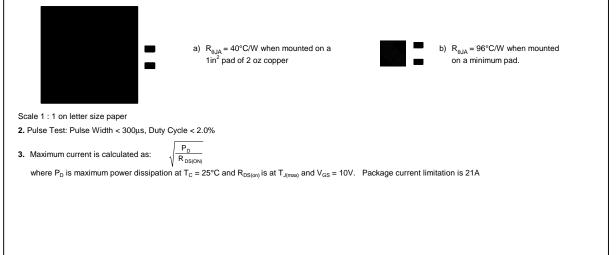
Features

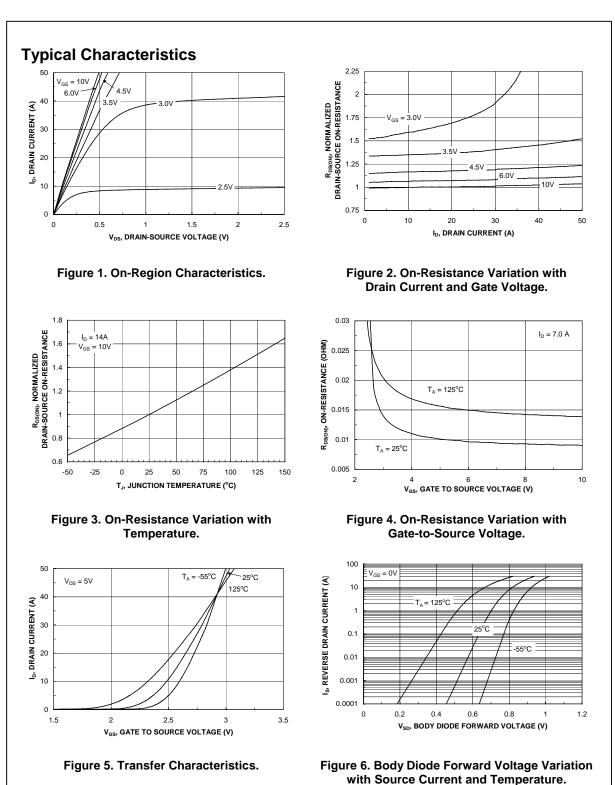
- 54 A, 30 V. $R_{DS(ON)} = 12 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 14.5 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$
- Low gate charge (18 nC typical)
- Fast switching
- High performance trench technology for extremely
 low R_{DS(ON)}

Absolute Maximum Ratings T_A=25°C unless otherwise noted

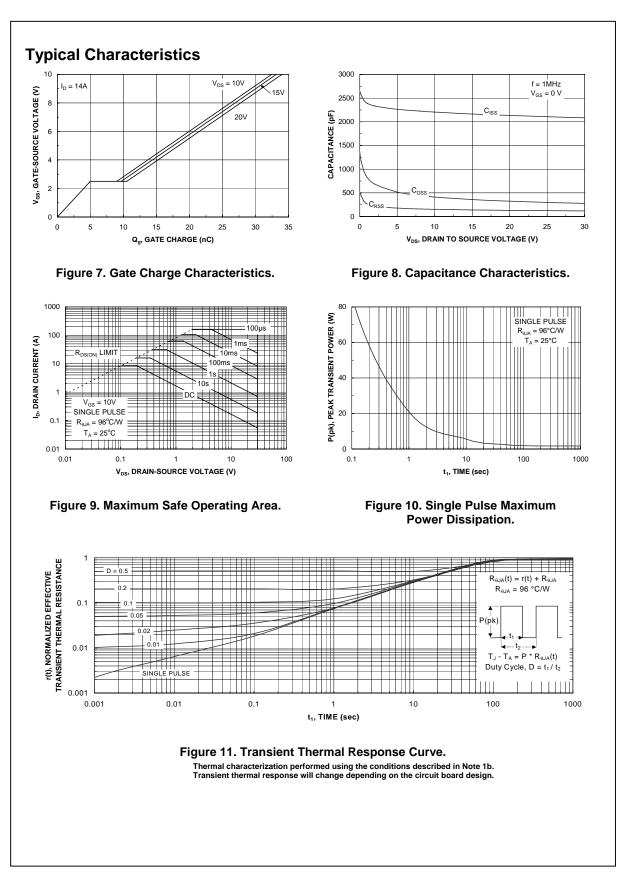
Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage		30	V	
V _{GSS}	Gate-Source Voltage		±16	V	
l _D	Drain Current – Continuous	(Note 3)	54	А	
	– Pulsed	(Note 1a)	162		
D	Power Dissipation for Single Operation	(Note 1)	57	W	
		(Note 1a)	3.8	.1	
		(Note 1b)	1.6	20 20	
Γ _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +175	°C	
Therma	I Characteristics	-	CE E WWW	.02	
R _{eJC}	Thermal Resistance, Junction-to-Case	(Note 1)	2.6	°C/W	
$R_{ ext{ hetaJA}}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	40	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	°C/W	

Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape width	Quantity
FDD6692	FDD6692	D-PAK (TO-252)	13"	12mm	2500 units
FDU6692	FDU6692	I-PAK (TO-251)	Tube	N/A	75



Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	burce Avalanche Ratings (Note	2)	1		1	1
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, $V_{DD} = 15 \text{ V}$, $I_D = 14 \text{ A}$			165	mJ
I _{AR}	Drain-Source Avalanche Current				14	Α
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$	30			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		26		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 24 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			1	μA
	Gate-Body Leakage, Forward	$V_{GS} = 16 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate-Body Leakage, Reverse	$V_{GS} = -16 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	1.6	3	V
<u>ΔVgs(th)</u> ΔT _J	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-5		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = 10 \ V, & I_D = 14 \ A \\ V_{GS} = 4.5 \ V, & I_D = 13 \ A \\ V_{GS} = 10 \ V, & I_D = 14 \ A, \ T_J = 125^\circ C \end{array} $		9.5 11.5 16.5	12 14.5 18	mΩ
D(on)	On–State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	50			Α
g _{FS}	Forward Transconductance	$V_{DS} = 5 V$, $I_{D} = 14 A$		54		S
Dvnamio	Characteristics			•		
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$		2164		pF
Coss	Output Capacitance	f = 1.0 MHz		357		pF
C _{rss}	Reverse Transfer Capacitance			138		pF
Switchir	g Characteristics (Note 2)	•				
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 15 V$, $I_D = 1 A$,		9	18	ns
t _r	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		5	10	ns
t _{d(off)}	Turn–Off Delay Time			35	56	ns
f	Turn-Off Fall Time			10	20	ns
Qg	Total Gate Charge	$V_{DS} = 15 V$, $I_D = 14 A$,		18	25	nC
	Gate-Source Charge	$V_{GS} = 5 V$		5		nC
Q _{gs}				5		nC
	Gate–Drain Charge					
Q _{gd}	Gate-Drain Charge ource Diode Characteristics	and Maximum Ratings				
Q _{gs} Q _{gd} Drain–S I _S	1.				3.2	A



1. R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JA} is guaranteed by design while R_{8CA} is determined by the user's board design.

FDD/ FDU6692 Rev. C(W)

TRADEMARKS			
5 5	and unregistered trademarks Fail stive list of all such trademarks.	child Semiconductor owns or is au	uthorized to use and is
ACEx™	FAST ®	PACMAN™	SuperSOT™-3
Bottomless™	FASTr™	POP™	SuperSOT™-6
CoolFET™	GlobalOptoisolator™	PowerTrench ®	SuperSOT [™] -8
CROSSVOLT™	GTO™	QFET™	SyncFET™
DenseTrench™	HiSeC™	QS™	TinyLogic™
DOME™	ISOPLANAR™	QT Optoelectronics [™]	UHC™
EcoSPARK™	LittleFET™	Quiet Series [™]	UltraFET [®]
E ² CMOS [™]	MicroFET™	SILENT SWITCHER ®	VCX™
EnSigna™	MICROWIRE™	SMART START™	
FACT™	OPTOLOGIC™	Star* Power™	
FACT Quiet Series™	OPTOPLANAR™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Advance Information	Formative or In Design			
Preliminary	First Production This datasheet contains preliminary of supplementary data will be published Fairchild Semiconductor reserves the changes at any time without notice in design.			
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor The datasheet is printed for reference information only		