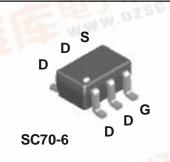


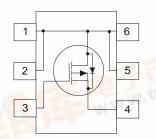
February 1999

SEMICONDUCTOR IM

FDG312P P-Channel 2.5V Specified PowerTrench[™] MOSFET

General Description

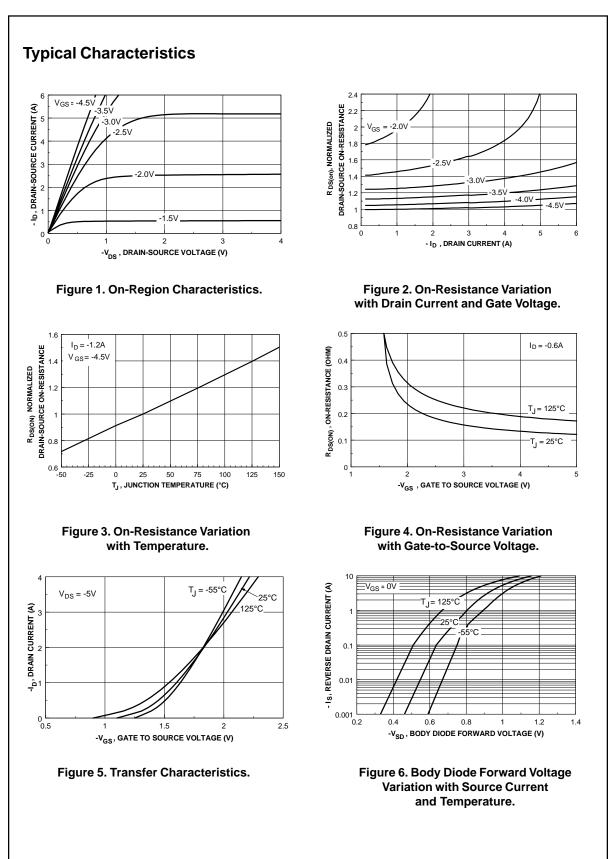

This P-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance. These devices are well suited for portable electronics applications.

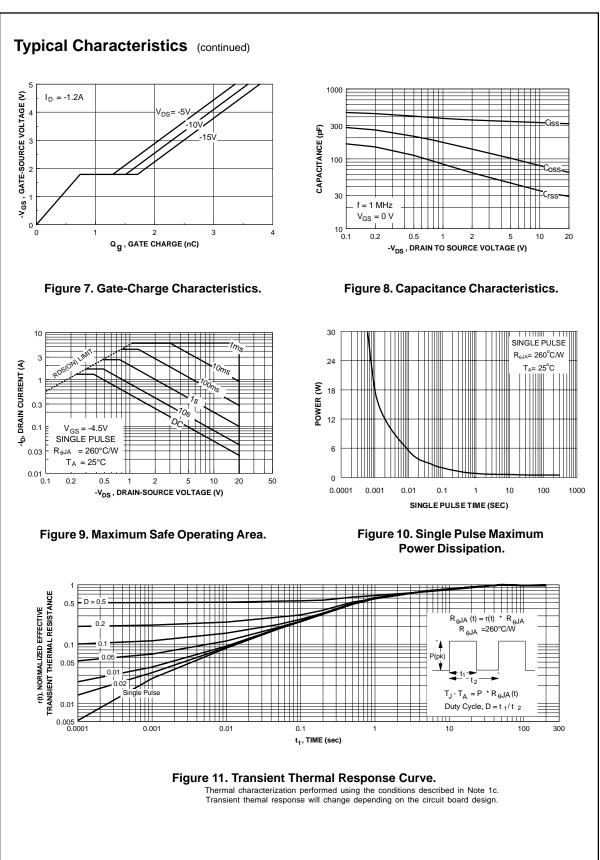

Applications

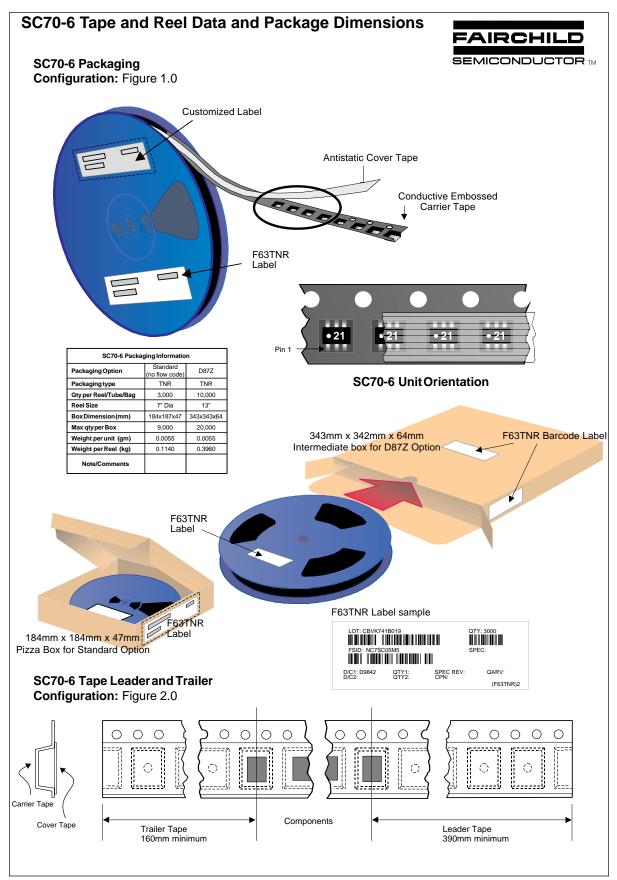
- · Load switch
- Battery protection
- Power management

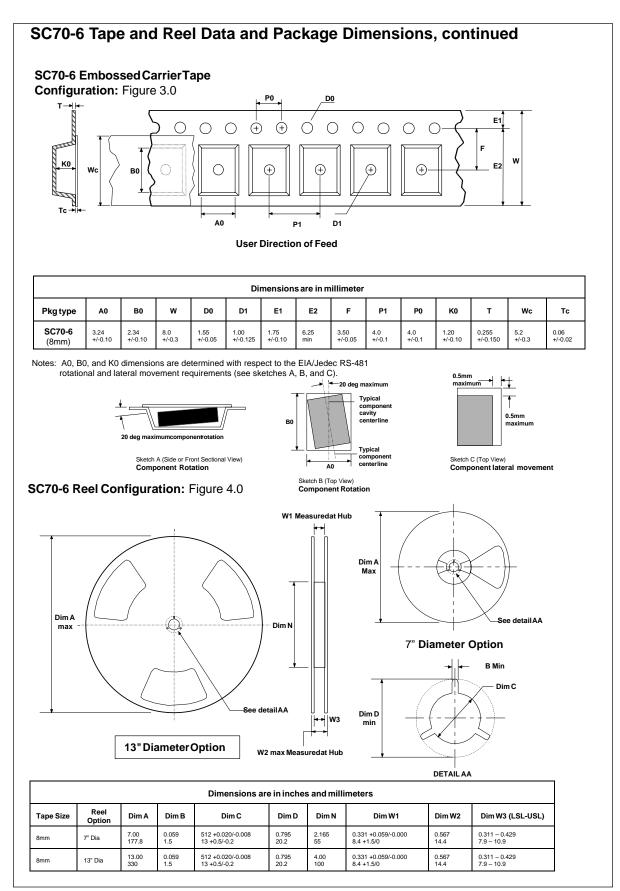
Features

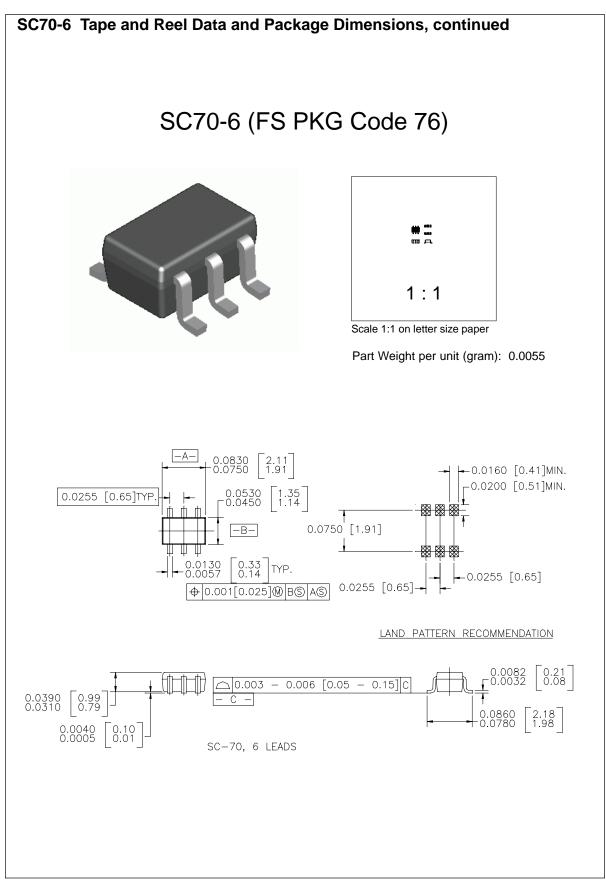
- -1.2 A, -20 V. $R_{DS(on)} = 0.18 \ \Omega \ @ V_{GS} = -4.5 \ V$ $R_{DS(on)} = 0.25 \ \Omega \ @ V_{GS} = -2.5 \ V.$
- Low gate charge (3.3 nC typical).
- High performance trench technology for extremely low R_{DS(ON)}.
- Compact industry standard SC70-6 surface mount
 package.


Absolute Maximum Ratings T_A = 25°C unless otherwise noted


Symbol	Parameter	Ratings	Units
V _{DSS}	Drain-Source Voltage	-20	V
V _{GSS}	Gate-Source Voltage	± 8	V
ID	Drain Current - Continuous (Note 1) - Pulsed	-1.2 -6	A
PD	Power Dissipation for Single Operation (Note 1a)	0.75	W
	(Note 1b)	0.55	
	(Note 1c)	0.48	
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	۰C


Package Outlines and Ordering Information


Device Marking	Device	Reel Size	Tape Width	Quantity
.12	FDG312P	7"	8mm	3000 units


Stics Source Breakdown Voltage down Voltage Temperature cient Sate Voltage Drain Current Body Leakage Current, Forward Body Leakage Current, Reverse Stics (Note 2) Threshold Voltage Threadold Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$ $I_{D} = -250 \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{GS} = 8 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$	-20	-19	-1 100 -100	V mV/°C μA nA
Source Breakdown Voltage down Voltage Temperature cient Sate Voltage Drain Current Body Leakage Current, Forward Body Leakage Current, Reverse Stics (Note 2) Threshold Voltage	$\begin{split} I_D &= -250 \ \mu\text{A}, \ \text{Referenced to} \ 25^\circ\text{C} \\ V_{DS} &= -16 \ \text{V}, \ V_{GS} &= 0 \ \text{V} \\ V_{GS} &= 8 \ \text{V}, \ V_{DS} &= 0 \ \text{V} \\ V_{GS} &= -8 \ \text{V}, \ V_{DS} &= 0 \ \text{V} \\ \end{split}$	-20	-19	100	mV/∘C μA nA
cient Gate Voltage Drain Current Body Leakage Current, Forward Body Leakage Current, Reverse Stics (Note 2) Threshold Voltage	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{GS} = 8 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$		-19	100	μA nA
Body Leakage Current, Forward Body Leakage Current, Reverse Stics (Note 2) Threshold Voltage	$V_{GS} = 8 V, V_{DS} = 0 V$ $V_{GS} = -8 V, V_{DS} = 0 V$			100	nA
Sody Leakage Current, Reverse Stics (Note 2) Threshold Voltage	$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$				
stics (Note 2) Threshold Voltage				-100	<u>م</u>
hreshold Voltage	N N 1 050 A				nA
3					
'hrachald \/altaga	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-0.4	-0.9	-1.5	V
Threshold Voltage Prature Coefficient	I_D = -250 μ A, Referenced to 25°C		2.5		mV/∘C
Drain-Source sistance	$ \begin{array}{l} V_{GS}=-4.5 \ V, \ I_{D}=-1.2 \ A \\ V_{GS}=-4.5 \ V, \ I_{D}=-1.2 \ A \ @125^{\circ}C \\ V_{GS}=-2.5 \ V, \ I_{D}=-1 \ A \end{array} $		0.135 0.200 0.187	0.18 0.29 0.25	Ω
ate Drain Current	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$	-3			А
rd Transconductance	$V_{DS} = -5 V$, $I_{D} = -1.2 A$		3.8		S
acteristics					
	$V_{DS} = -10 V, V_{GS} = 0 V,$ f = 1.0 MHz		330		pF
Capacitance			80		pF
se Transfer Capacitance			35		pF
ractoristics (Note 2)	·				
	$V_{DD} = -5 V I_D = -0.5 A$		7	15	ns
,	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		12	22	ns
)ff Delay Time			16	26	ns
Diff Fall Time			5	12	ns
Sate Charge	V _{DS} = -10 V, I _D = -1.2 A,		3.3	5	nC
Source Charge	V _{GS} = -4.5 V		0.8		nC
Drain Charge	1		0.7		nC
)iode Characteristics and	d Maximum Ratings	•			
	-			-0.6	Α
Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = -0.6 A$ (Note 2)		-0.83	-1.2	V
	um Continuous Drain-Source Dio Source Diode Forward Voltage	$V_{GS} = -2.5 \text{ V}, I_D = -1 \text{ A}$ ate Drain Current $V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$ rd Transconductance $V_{DS} = -5 \text{ V}, I_D = -1.2 \text{ A}$ acteristicsCapacitance $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ t Capacitance $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ se Transfer Capacitance $V_{DD} = -5 \text{ V}, I_D = -0.5 \text{ A}, V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ on Delay Time $V_{DS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ Off Delay Time $V_{DS} = -10 \text{ V}, I_D = -1.2 \text{ A}, V_{GS} = -4.5 \text{ V}$ Off Fall Time $V_{DS} = -10 \text{ V}, I_D = -1.2 \text{ A}, V_{GS} = -4.5 \text{ V}$ Diode Charge $V_{DS} = -4.5 \text{ V}$ Diode Characteristics and Maximum Ratingsum Continuous Drain-Source Diode Forward Current	$V_{GS} = -2.5 V, I_D = -1 A$ ate Drain Current $V_{GS} = -4.5 V, V_{DS} = -5 V$ rd Transconductance $V_{DS} = -5 V, I_D = -1.2 A$ acteristicsCapacitance $V_{DS} = -10 V, V_{GS} = 0 V,$ t Capacitance $f = 1.0 \text{ MHz}$ se Transfer Capacitance $V_{DD} = -5 V, I_D = -0.5 A,$ On Delay Time $V_{DD} = -5 V, I_D = -0.5 A,$ Off Delay Time $V_{DS} = -4.5 V, R_{GEN} = 6 \Omega$ Off Fall Time $V_{DS} = -10 V, I_D = -1.2 A,$ Off Fall Time $V_{DS} = -10 V, I_D = -1.2 A,$ Orain Charge $V_{DS} = -4.5 V$ Diode Characteristics and Maximum Ratingsnum Continuous Drain-Source Diode Forward CurrentSource Diode Forward Voltage $V_{GS} = 0 V, I_S = -0.6 A$ (Note 2)	VGS = -2.5 V, ID = -1 A0.187ate Drain CurrentVGS = -4.5 V, VDS = -5 V-3rd TransconductanceVDS = -5 V, ID = -1.2 A3.8acteristicsCapacitanceVDS = -10 V, VGS = 0 V, f = 1.0 MHz330acteristicsf = 1.0 MHz80se Transfer CapacitanceVDS = -10 V, VGS = 0 V, f = 1.0 MHz330matteristics(Note 2)0035matteristics(Note 2)0012Dn Delay TimeVDD = -5 V, ID = -0.5 A, VGS = -4.5 V, RGEN = 6 Ω 7Dif Delay TimeVDS = -4.5 V, RGEN = 6 Ω 12Dif Delay TimeVDS = -10 V, ID = -1.2 A, VGS = -4.5 V3.3Out Fall Time50.8Drain ChargeVDS = -10 V, ID = -1.2 A, VGS = -4.5 V0.8Drain ChargeVDS = -10 V, ID = -1.2 A, VGS = -4.5 V0.8Diate Characteristics and Maximum Ratings0.7Diate Characteristics and Maximum Ratings0.7Diate Diode Forward VoltageVGS = 0 V, IS = -0.6 A (Note 2)-0.83	V _{GS} = -2.5 V, I _D = -1 A 0.187 0.25 ate Drain Current V _{GS} = -4.5 V, V _{DS} = -5 V -3 -3 rd Transconductance V _{DS} = -5 V, I _D = -1.2 A 3.8 -3 acteristics

September 1998, Rev. A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

	ACEx™	HiSeC™
l	Bottomless™	ISOPLANAR™
(CoolFET™	MICROWIRE™
(CROSSVOLT™	POP™
l	E²CMOS™	PowerTrench [®]
I	FACT™	QFET™
I	FACT Quiet Series™	QS™
	FAST [®]	Quiet Series™
	FASTr™	SuperSOT™-3
(GTO™	SuperSOT™-6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] VCX[™]

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.