捷多邦,专业PCB打样工厂,24小时加急出货

September 2003

FDG6332C

FDG6332C 20V N & P-Channel PowerTrench[®] MOSFETs

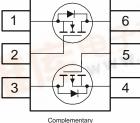
WW.DZSC

General Description

The N & P-Channel MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

These devices have been designed to offer exceptional power dissipation in a very small footprint for applications where the bigger more expensive TSSOP-8 and SSOP-6 packages are impractical.

Applications


- DC/DC converter
- Load switch
- LCD display inverter

Features

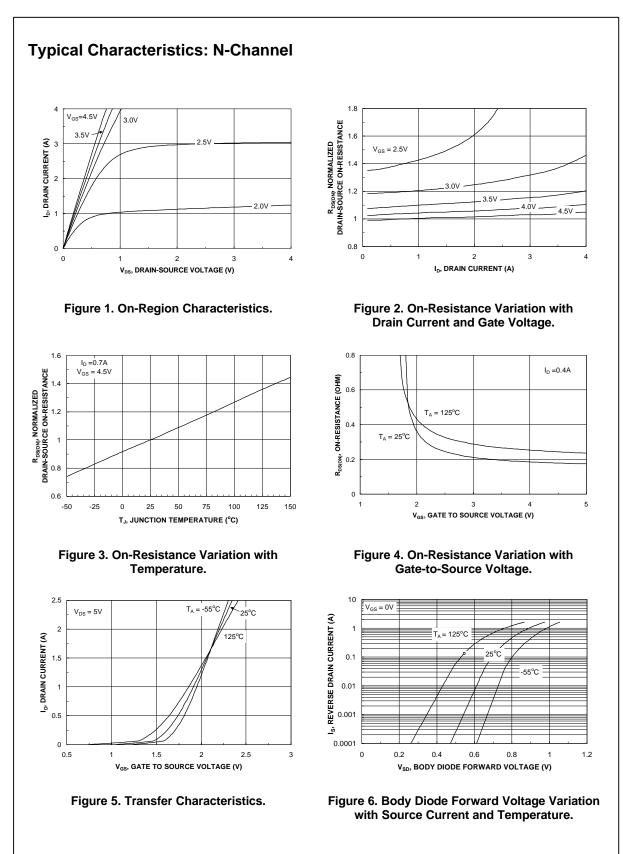
• Q1 0.7 A, 20V. $\begin{array}{l} R_{\text{DS(ON)}} = 300 \mbox{ m}\Omega \ @ \mbox{V}_{\text{GS}} = 4.5 \mbox{ V} \\ R_{\text{DS(ON)}} = 400 \mbox{ m}\Omega \ @ \mbox{V}_{\text{GS}} = 2.5 \mbox{ V} \end{array}$

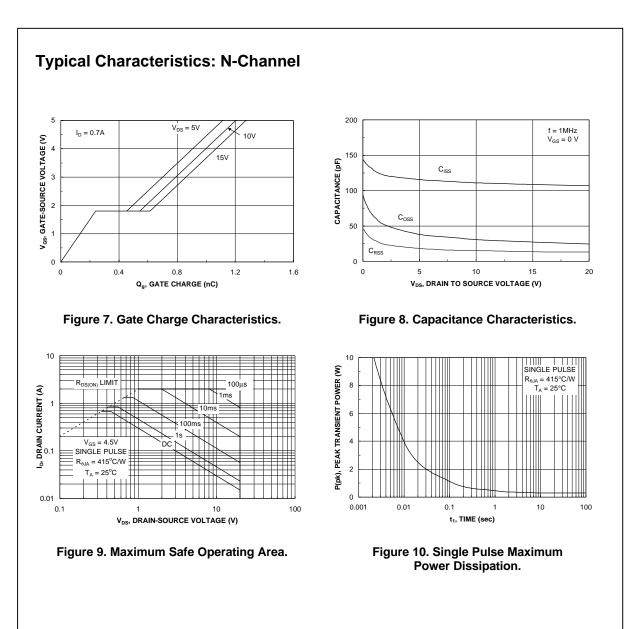
- Q2 -0.6 A, -20V. $R_{DS(ON)} = 420 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 630 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$
- Low gate charge
- High performance trench technology for extremely
 low R_{DS(ON)}
- SC70-6 package: small footprint (51% smaller than SSOT-6); low profile (1mm thick)

Complementary

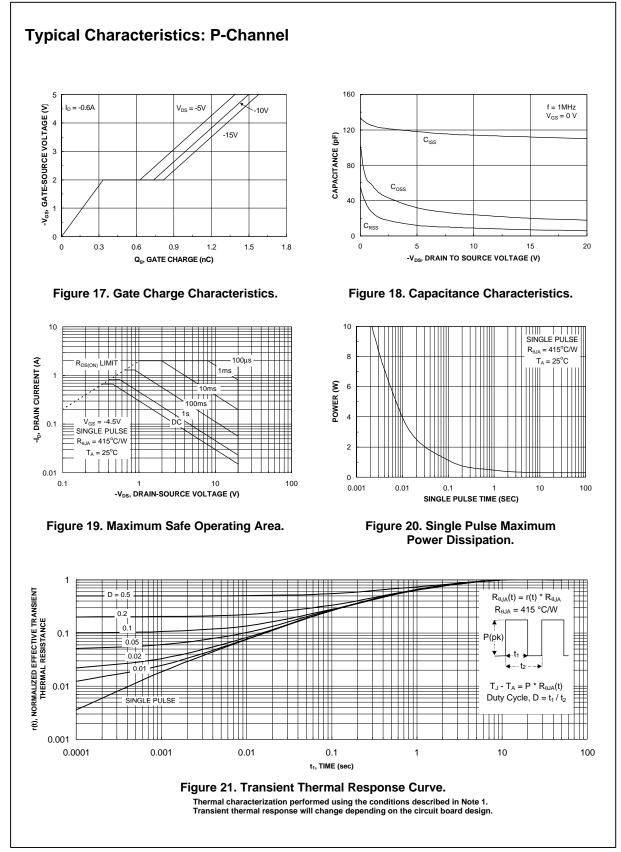
Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol		Parameter		Q1	Q2	Units
V _{DSS}	Drain-Sour	ce Voltage		20	-20	V
V _{GSS}	Gate-Sourc	e Voltage		±12	±12	V
I _D	Drain Curre	ent – Continuous	(Note 1)	0.7	-0.6	A
		 Pulsed 		2.1	-2	L D V
P _D	Power Diss	ipation for Single Opera	ation (Note 1)	0.3		W
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150		°C
Therma	I Charac	teristics				
R _{θJA}	Thermal Re	esistance, Junction-to-A	mbient (Note 1)	4	15	°C/W
Package	e Markin	g and Ordering	g Information			
Device I	Marking	Device	Reel Size	Tape wi	dth	Quantity
.3	2	FDG6332C	7" 8mm			000 units


Symbol	Parameter		Test Conditions		Min	Тур	Max	Units	
Off Char	acteristics		1						
BV _{DSS}	Drain–Source Breakdown Volta	ge		Q1	20			V	
	Breakdown Voltage Temperatu	•	6 6 i) 6 i)	Q2 Q1	-20	14		mV/°C	
ΔT_{J}	Coefficient	-	$I_D = -250 \ \mu\text{A}, \text{Ref. to } 25^{\circ}\text{C}$	Q2		-14			
I _{DSS}	Zero Gate Voltage Drain Currer	nt		Q1 Q2			1 -1	μA	
I _{GSSF} /I _{GSSR}	Gate-Body Leakage, Forward		$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$				±100	nA	
I _{GSSF} /I _{GSSR}	Gate–Body Leakage, Reverse		$V_{GS} = \pm 12V , V_{DS} = 0 V$				±100	nA	
	acteristics (Note 2)					1	1	1	
V _{GS(th)}	Gate Threshold Voltage	Q1	$V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$		0.6	1.1	1.5	V	
<u> </u>	Cata Thrashold Valtage	Q2	$V_{DS} = V_{GS}, I_D = -250 \mu A$		-0.6	-1.2	-1.5		
$\frac{\Delta V_{GS(th)}}{\Delta T_{,l}}$	Gate Threshold VoltageQ1 $I_D = 250 \ \mu A, Ref. To 25^{\circ}C$ Temperature CoefficientQ2 $I_D = -250 \ \mu A, Ref. to 25^{\circ}C$			-2.8 3		mV/°C			
R _{DS(on)}	Static Drain–Source	Q1	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 0.7 \text{ A}$			180	300	mΩ	
	On-Resistance		$V_{GS} = 2.5 \text{ V}, I_D = 0.6 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 0.7 \text{ A}, \text{T}_J = 125 \text{ A}$		293	400 442			
		Q2	$V_{GS} = -4.5 \text{ V}, I_D = -0.6 \text{ A}$	50		247 300	442		
		QZ	$V_{GS} = -2.5 \text{ V}, I_D = -0.5 \text{ A}$			470	630		
			V_{GS} =-4.5 V, I _D =-0.6 A,T _J =12	5°C		400	700		
Ĵfs	Forward Transconductance	Q1	$V_{DS} = 5 V \qquad I_D = 0.7 A$			2.8		S	
		Q2	$V_{DS} = -5 V I_D = -0.6A$			1.8			
D(on)	On–State Drain Current	Q1	$V_{GS} = 4.5 V$, $V_{DS} = 5 V$ $V_{GS} = -4.5 V$, $V_{DS} = -5 V$		1			A	
.		Q2	$v_{GS} = -4.5 v, v_{DS} = -5 v$		-2				
	Characteristics	04	V _{DS} =10 V, V _{GS} = 0 V, f=1.0MH	1-7		113		- 5	
C _{iss}	Input Capacitance	Q1 Q2	V_{DS} =10 V, V _{GS} = 0 V, 1=1.0001 V _{DS} =-10 V, V _{GS} = 0 V, f=1.0001			114		pF	
C _{oss}	Output Capacitance	Q1	V_{DS} =10 V, V _{GS} = 0 V, f=1.0MH			34		pF	
055		Q2	V_{DS} =-10 V, V _{GS} = 0 V, f=1.0MHz			24		P.	
C _{rss}	Reverse Transfer Capacitance	Q1	V _{DS} =10 V, V _{GS} = 0 V, f=1.0MH			16		pF	
		Q2	V _{DS} =-10 V, V _{GS} = 0 V, f=1.0MHz			9			
Switchin	g Characteristics (Note 2)								
t _{d(on)}	Turn-On Delay Time	Q1	For Q1 :			5	10	ns	
		Q2	$V_{DS} = 10 V$, $I_{D} = 1 A$			5.5	11		
r	Turn–On Rise Time	Q1	V_{GS} = 4.5 V, R_{GEN} = 6 Ω			7	15	ns	
	Turn–Off Delay Time	Q2 Q1	For Q2 : V _{DS} =–10 V, I _D = –1 A			14 9	25 18		
d(off)	Turn-On Delay Time	Q2	V_{GS} = -4.5 V, R_{GEN} = 6 Ω			6	12	ns	
f	Turn–Off Fall Time	Q1	-			1.5	3	ns	
		Q2				1.7	3.4		
Qg	Total Gate Charge	Q1	For Q1 :	_		1.1	1.5	nC	
		Q2	$V_{DS} = 10 \text{ V}, I_D = 0.7 \text{ A}$ $V_{CO} = 45 \text{ V}, B_{CO} = 6 \Omega$	$V_{DS} = 10 \text{ V}, \qquad I_{D} = 0.7 \text{ A}$		1.4	2		
Q_{gs}	Gate-Source Charge	Q1 Q2	V _{GS} = 4.5 V, R _{GEN} = 0.52 For Q2 :	V_{GS} = 4.5 V, R_{GEN} = 6 Ω		0.24		nC	
Q _{gd}	Gate–Drain Charge	Q2 Q1	V _{DS} = -10 V, I _D = -0.6 A			0.3		nC	
∽ga		Q2	$V_{GS}\text{=}-4.5 \text{ V}, \ \text{R}_{\text{GEN}}\text{=}6 \ \Omega$			0.3			


			^					
Symbol	Parameter		Test Conditions		Min	Тур	Max	Units
Drain-S	ource Diode Characteris	tics a	nd Maximum Ratings					
			Diode Forward Current Q1					
ls	Maximum Continuous Drain-So	ource E	Diode Forward Current	Q1			0.25	А
Is	Maximum Continuous Drain-So	ource [Q1 Q2			0.25 0.25	А
I _S	Maximum Continuous Drain–So Drain–Source Diode Forward	ource [0.74	0.00	A V

Notes:


 R_{6JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{6JC} is guaranteed by design while R_{6JA} is determined by the user's board design. R_{6JA} = 415°C/W when mounted on a minimum pad of FR-4 PCB in a still air environment.

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	LittleFET™	Power247 [™]	SuperSOT™-6
ActiveArray™	FAST®	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FASTr™	MicroFET™	QFET [®]	SyncFET™
CoolFET™	FRFET™	MicroPak™	QS™	TinyLogic®
CROSSVOLT™	GlobalOptoisolator™	MICROWIRE™	QT Optoelectronics [™]	TINYOPTO™
DOME™	GTO™	MSX™	Quiet Series [™]	TruTranslation™
EcoSPARK™	HiSeC™	MSXPro™	RapidConfigure™	UHC™
E ² CMOS [™]	I²C™	OCX™	RapidConnect™	UltraFET [®]
EnSigna™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER®	VCX™
FACT™	ISOPLANAR™	OPTOLOGIC [®]	SMART START™	
Across the boar	d. Around the world.™	OPTOPLANAR™	SPM™	
The Power Fran		PACMAN™	Stealth™	
Programmable A		POP™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.