August 1999 # **FDN342P** # P-Channel 2.5V Specified PowerTrench™ MOSFET ## **General Description** This P-Channel 2.5V specified MOSFET is produced in a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications for a wide range of gate drive voltages (2.5V - 12V). ### **Applications** - · Load switch - Battery protection - · Power management ### **Features** - -2 A, -20 V. $R_{DS(ON)} = 0.08 \Omega$ @ $V_{GS} = -4.5 V$ $R_{DS(ON)} = 0.13 \Omega$ @ $V_{GS} = -2.5 V$. - Rugged gate rating (±12V). - High performance trench technology for extremely low R_{DS(ON)}. - Enhanced power SuperSOT™-3 (SOT-23). # Absolute Maximum Ratings T_A = 25°C unless otherwise noted | Symbol | Parameter | Ratings | Units | | |-----------------------------------|--|-------------|-------|-------| | V _{DSS} | Drain-Source Voltage | -20 | V | | | V _{GSS} | Gate-Source Voltage | ±12 | V | | | I _D | Drain Current - Continuous | (Note 1a) | -2 | Α | | | - Pulsed | | -10 | Vec C | | P _D | Power Dissipation for Single Operation | (Note 1a) | 0.5 | W | | | | (Note 1b) | 0.46 | 7 | | T _J , T _{stg} | Operating and Storage Junction Temperatu | -55 to +150 | °C | | # Thermal Characteristics | R _e JA | Thermal Resistance, Junction-to-Ambient | (Note 1a) | 250 | °C/W | |-------------------|---|-----------|-----|------| | R _e JC | Thermal Resistance, Junction-to-Case | (Note 1) | 75 | °C/W | Package Outlines and Ordering Information | Device Marking | Device | Reel Size | Tape Width | Quantity | | |----------------|-----------------|-----------|------------|------------|--| | FDN342P | FDN342P FDN342P | | 8mm | 3000 units | | | Symbol | Parameter | Min | Тур | Max | Units | | |---|---|---|------|-------------------------|----------------------|-------| | Off Char | acteristics | 1 | ļ | | | ļ | | BV _{DSS} | Drain-Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$ | -20 | | | V | | <u>ΔBV_{DSS}</u>
ΔT _J | Breakdown Voltage Temperature
Coefficient | I_D = -250 μ A,Referenced to 25°C | | -16 | | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = -16 V, V _{GS} = 0 V | | | -1 | μΑ | | I _{GSSF} | Gate-Body Leakage Current,
Forward | V _{GS} = 12 V, V _{DS} = 0 V | | | 100 | nA | | I _{GSSR} | Gate-Body Leakage Current,
Reverse | $V_{GS} = -12 \text{ V}, V_{DS} = 0 \text{ V}$ | | | -100 | nA | | On Char | acteristics (Note 2) | | | | | | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$ | -0.6 | -1.05 | -1.5 | V | | $\Delta V_{GS(th)} \over \Delta T_J$ | Gate Threshold Voltage
Temperature Coefficient | I_D = -250 μ A,Referenced to 25°C | | 3 | | mV/°C | | R _{DS(on)} | Static Drain-Source
On-Resistance | V _{GS} = -4.5 V, I _D = -2 A
V _{GS} = -4.5 V, I _D = -2 A,T _J =125°C
V _{GS} = -2.5 V, I _D = -1.5 A | | 0.062
0.086
0.099 | 0.08
0.14
0.13 | Ω | | I _{D(on)} | On-State Drain Current | $V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$ | -5 | | | Α | | g Fs | Forward Transconductance | V _{DS} = -5 V, I _D = -5 A | | 7 | | S | | Dvnamic | : Characteristics | • | • | | | • | | C _{iss} | Input Capacitance | V _{DS} = -10 V, V _{GS} = 0 V | | 635 | | pF | | Coss | Output Capacitance | f = 1.0 MHz | | 175 | | pF | | C _{rss} | Reverse Transfer Capacitance | 1 | | 75 | | pF | | Switchin | g Characteristics (Note 2) | | | | | | | t _{d(on)} | Turn-On Delay Time | V _{DD} = -10 V, I _D = -1 A | | 20 | 35 | ns | | t _r | Turn-On Rise Time | $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ | | 8 | 16 | ns | | t _{d(off)} | Turn-Off Delay Time | 1 | | 9 | 18 | ns | | t _f | Turn-Off Fall Time | 7 | | 19 | 32 | ns | | Q_g | Total Gate Charge | $V_{DS} = -10 \text{ V}, I_D = -2 \text{ A}$ | | 6.3 | 9 | nC | | Q _{gs} | Gate-Source Charge | $V_{GS} = -4.5 V$, | | 1.5 | | nC | | Q_{gd} | Gate-Drain Charge | | | 1.7 | | nC | | Drain-Sc | ource Diode Characteristics | and Maximum Ratings | | | | | | Is | Maximum Continuous Drain-Source | | | | -0.42 | Α | | V _{SD} | Drain-Source Diode Forward
Voltage | V _{GS} = 0 V, I _S = -0.42 A (Note 2) | | -0.7 | -1.2 | V | 1. $R_{\text{e}_{\text{L}}A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\text{e}_{\text{L}}C}$ is guaranteed by design while $R_{\text{e}_{\text{C}}A}$ is determined by the user's board design. a) 250°C/W when mounted on a 0.02 in² pad of 2 oz. Cu. b) 270°C/W when mounted on a mininum pad. Scale 1 : 1 on letter size paper **2.** Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0% # **Typical Characteristics** Figure 1. On-Region Characteristics. Figure 3. On-Resistance Variation with Temperature. Figure 5. Transfer Characteristics. Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. Figure 4. On-Resistance Variation with Gate-to-Source Voltage. Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature. # Typical Characteristics (continued) Figure 7. Gate Charge Characteristics. Figure 9. Maximum Safe Operating Area. Figure 10. Single Pulse Maximum Power Dissipation. Figure 11. Transient Thermal Response Curve. Thermal characterization performed using the conditions described in Note 1b. Transient themal response will change depending on the circuit board design. # SuperSOT™-3 Tape and Reel Data and Package Dimensions, continued ### **SSOT-3 Embossed Carrier Tape** Configuration: Figure 3.0 | Dimensions are in millimeter | | | | | | | | | | | | | | | |------------------------------|-----------------|-----------------|---------------|-----------------|-------------------|-----------------|-------------|-----------------|---------------|---------------|-----------------|-------------------|---------------|---------------| | Pkg type | Α0 | В0 | w | D0 | D1 | E1 | E2 | F | P1 | P0 | K0 | т | Wc | Тс | | SSOT-3
(8mm) | 3.15
+/-0.10 | 2.77
+/-0.10 | 8.0
+/-0.3 | 1.55
+/-0.05 | 1.125
+/-0.125 | 1.75
+/-0.10 | 6.25
min | 3.50
+/-0.05 | 4.0
+/-0.1 | 4.0
+/-0.1 | 1.30
+/-0.10 | 0.228
+/-0.013 | 5.2
+/-0.3 | 0.06
+/-02 | Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C). Sketch A (Side or Front Sectional View) Component Rotation Sketch B (Top View) Component Rotation Sketch C (Top View) Component lateral movement DETAIL AA ### SSOT-3 Reel Configuration: Figure 4.0 | | Dimensions are in inches and millimeters | | | | | | | | | |-----------|--|---------------|--------------|-----------------------------------|---------------|-------------|-----------------------------------|---------------|-----------------------------| | Tape Size | Reel
Option | Dim A | Dim B | Dim C | Dim D | Dim N | Dim W1 | Dim W2 | Dim W3 (LSL-USL) | | 8mm | 7" Dia | 7.00
177.8 | 0.059
1.5 | 512 +0.020/-0.008
13 +0.5/-0.2 | 0.795
20.2 | 2.165
55 | 0.331 +0.059/-0.000
8.4 +1.5/0 | 0.567
14.4 | 0.311 - 0.429
7.9 - 10.9 | | 8mm | 13" Dia | 13.00
330 | 0.059
1.5 | 512 +0.020/-0.008
13 +0.5/-0.2 | 0.795
20.2 | 4.00
100 | 0.331 +0.059/-0.000
8.4 +1.5/0 | 0.567
14.4 | 0.311 - 0.429
7.9 - 10.9 | # SuperSOT™-3 Tape and Reel Data and Package Dimensions, continued # SuperSOT™-3 (FS PKG Code 32) Scale 1:1 on letter size paper Dimensions shown below are in: inches [millimeters] Part Weight per unit (gram): 0.0097 NOTES : UNLESS OTHERWISE SPECIFIED SUPER SOT , 3 LEADS - 1. STANDARD LEAD FINISH TO BE 150 MICROINCHES / 3.81 MICROMETERS MINIMUM TIN/LEAD (SOLDER) ON COPPER. - 2. NO JEDEC REGISTRATION AS OF DEC. 1995. ### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEXTM ISOPLANARTM UHCTM CoolFETTM MICROWIRETM VCXTM CROSSVOLTTM POPTM E²CMOS[™] PowerTrench[™] FACTTM QSTM $\begin{array}{lll} \text{FACT Quiet Series}^{\text{TM}} & \text{Quiet Series}^{\text{TM}} \\ \text{FAST}^{\text{\$}} & \text{SuperSOT}^{\text{TM}}\text{-3} \\ \text{FASTr}^{\text{TM}} & \text{SuperSOT}^{\text{TM}}\text{-6} \\ \text{GTO}^{\text{TM}} & \text{SuperSOT}^{\text{TM}}\text{-8} \\ \text{HiSeC}^{\text{TM}} & \text{TinyLogic}^{\text{TM}} \\ \end{array}$ #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. ### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. - A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|---| | Advance Information | Formative or
In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. |