

SO－8
Absolute Maximum Ratings
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Ratings	Units
$V_{\text {DSS }}$	Drain－Source Voltage	20	V
$\mathrm{V}_{\mathrm{GSS}}$	Gate－Source Voltage	± 8	V
I_{D}	Drain Current－Continuous（Note 1a）	7.5	A
	－Pulsed	20	
PD	Power Dissipation for Dual Operation	2.0	W
	$\begin{array}{ll}\text { Power Dissipation for Single Operation } & \begin{array}{l}\text {（Note 1a）} \\ \text {（Note 1b）} \\ \text {（Note c）}\end{array} \\ \\ \text {（ }\end{array}$	1.6	
		1.0	
		0.9	
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	Operating and Storage Junction Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\text {өJA }}$	Thermal Resistance，Junction－to－Ambient	（Note 1a）	78	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{8} \mathrm{JC}$	Thermal Resistance，Junction－to－Case	（Note 1）	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			90	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
FDS6890A	FDS6890A	13	12 mm	2500 units
（ब）				

Electrical Characteristics $\quad T_{\mathrm{A}}=25 \mathrm{C}$ unless othemwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units

Off Characteristics

BV ${ }_{\text {DSS }}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	20			V
$\frac{\Delta \mathrm{BV} V_{\mathrm{DSS}}}{\Delta \mathrm{~T}_{\mathrm{J}}}$	Breakdown Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$		14		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Idss	Zero Gate Voltage Drain Current	$\mathrm{V}_{\mathrm{DS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
IGSSF	Gate-Body Leakage Current, Forward	$\mathrm{V}_{\mathrm{GS}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			100	nA
IGSSR	Gate-Body Leakage Current, Reverse	$\mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			-100	nA

On Characteristics (Note 2)

$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	0.5	0.8	1.5	V
$\Delta \mathrm{~V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$		-3.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{\mathrm{J}}$	Temperature Coefficient					
$\mathrm{R}_{\mathrm{DS}(\text { on })}$	Static Drain-Source	Vn-Resistance	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.5 \mathrm{~A}$	0.013	0.018	Ω
		$\mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.5 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		0.021	0.034	
$\mathrm{I}_{\mathrm{D}(\text { on })}$	On-State Drain Current	$\mathrm{V}_{\mathrm{G}}=6.5 \mathrm{~A}$	$10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=5 \mathrm{~V}$	20		
$\mathrm{~g}_{\mathrm{FS}}$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.5 \mathrm{~A}$		35		S

Dynamic Characteristics

C iss	Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	2130	pF
Coss	Output Capacitance		545	pF
Crss	Reverse Transfer Capacitance		270	pF

Switching Characteristics (Note 2)

$\mathrm{t}_{\text {d(on) }}$	Turn-On Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$	13	24	ns
t_{r}	Turn-On Rise Time		26	42	ns
$\mathrm{t}_{\text {d(off) }}$	Turn-Off Delay Time		65	90	ns
t_{f}	Turn-Off Fall Time		23	37	ns
Q_{g}	Total Gate Charge	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=7.5 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \end{aligned}$	23	32	nC
Q_{gs}	Gate-Source Charge		3.2		nC
Q_{gd}	Gate-Drain Charge		4.4		nC

Drain-Source Diode Characteristics and Maximum Ratings

I_{s}	Maximum Continuous Drain-Source Diode Forward Current V_{SD}			Drain-Source Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=1.3 \mathrm{~A} \quad$ (Note 2)	

Notes:

1. $R_{\theta J A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta J C}$ is guaranteed by design while $R_{\theta C A}$ is determined by the user's board design.

b) $125^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $0.02 \mathrm{in}^{2}$ pad of 2 oz . copper.
c) $135^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad
[^0]Typical Characteristics (continued)

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation withTemperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics (continued)

Figure 9. Maximum Safe Operating Area.

Figure 8. Capacitance Characteristics.

Figure 10. Single Pulse Maximum Power Dissipation.

Figure 11. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in Note 1c.
Transient themal response will change depending on the circuit board design.

SO-8 Tape and Reel Data and Package Dimensions

SOIC(8Ids) Packaging Configuration: Figure 1.0

SOIC (8lds) Packaging Information				
Packaging Option	Standard (no flow code)	L86Z	F011	D84Z
Packaging type	TNR	Rail/Tube	TNR	TNR
Qty per Reel/Tube/Bag	2,500	95	4,000	500
Reel Size	13 " Dia	-	13 " Dia	7 " Dia
Box Dimension (mm)	$343 \times 64 \times 343$	$530 \times 130 \times 83$	$343 \times 64 \times 343$	$184 \times 187 \times 47$
Max qty per Box	5,000	30,000	8,000	1,000
Weight per unit (gm)	0.0774	0.0774	0.0774	0.0774
Weight per Reel (kg)	0.6060	-	0.9696	0.1182
Note/Comments				

SOIC-8 Unit Orientation

F63TNR Label sample

SOIC(81ds) Tape Leader and Trailer Configuration: Figure 2.0

SO-8 Tape and Reel Data and Package Dimensions, continued

SOIC(8lds) Embossed Carrier Tape
Configuration: Figure 3.0

User Direction of Feed

Dimensions are in millimeter														
Pkg type	A0	B0	w	D0	D1	E1	E2	F	P1	P0	K0	T	Wc	Tc
SOIC(8lds) (12mm)	$\begin{aligned} & 6.50 \\ & +/-0.10 \end{aligned}$	$\begin{aligned} & 5.30 \\ & +/-0.10 \end{aligned}$	$\begin{aligned} & 12.0 \\ & +/-0.3 \end{aligned}$	$\begin{aligned} & 1.55 \\ & +/-0.05 \end{aligned}$	$\begin{aligned} & 1.60 \\ & +1 /-0.10 \end{aligned}$	$\begin{aligned} & 1.75 \\ & +/-0.10 \end{aligned}$	$\begin{aligned} & 10.25 \\ & \mathrm{~min} \end{aligned}$	$\begin{aligned} & 5.50 \\ & +/-0.05 \end{aligned}$	$\begin{aligned} & 8.0 \\ & +/-0.1 \end{aligned}$	$\begin{aligned} & 4.0 \\ & +1-0.1 \end{aligned}$	$\begin{aligned} & 2.1 \\ & ++-0.10 \end{aligned}$	$\begin{aligned} & 0.450 \\ & +/- \\ & 0.150 \end{aligned}$	$\begin{aligned} & 9.2 \\ & +/-0.3 \end{aligned}$	$\begin{aligned} & 0.06 \\ & +1-0.02 \end{aligned}$

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

Sketch A (Side or Front Sectional View) Component Rotation

SOIC(8Ids) Reel Configuration: Figure 4.0

Sketch B (Top View) Component Rotation

13" Diameter Option

Weasured at Hub

7"Diameter Option

DETAIL AA

Dimensions are in inches and millimeters									
Tape Size	Reel Option	$\operatorname{Dim} \mathrm{A}$	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
12 mm	7" Dia	$\begin{aligned} & 7.00 \\ & 177.8 \end{aligned}$	$\begin{aligned} & 0.059 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 512+0.020 /-0.008 \\ & 13+0.5 /-0.2 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 2.165 \\ & 55 \end{aligned}$	$\begin{aligned} & 0.488+0.078 /-0.000 \\ & 12.4+2 / 0 \end{aligned}$	$\begin{aligned} & 0.724 \\ & 18.4 \end{aligned}$	$\begin{aligned} & 0.469-0.606 \\ & 11.9-15.4 \end{aligned}$
12mm	13" Dia	$\begin{aligned} & 13.00 \\ & 330 \end{aligned}$	$\begin{aligned} & 0.059 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 512+0.020 /-0.008 \\ & 13+0.5 /-0.2 \end{aligned}$	$\begin{aligned} & 0.795 \\ & 20.2 \end{aligned}$	$\begin{aligned} & 7.00 \\ & 178 \end{aligned}$	$\begin{aligned} & 0.488+0.078 /-0.000 \\ & 12.4+2 / 0 \end{aligned}$	$\begin{aligned} & 0.724 \\ & 18.4 \end{aligned}$	$\begin{aligned} & 0.469-0.606 \\ & 11.9-15.4 \end{aligned}$

SO-8 Tape and Reel Data and Package Dimensions, continued

SOIC-8 (FS PKG Code S1)

Scale 1:1 on letter size paper Dimensions shown below are in: inches [millimeters]

Part Weight per unit (gram): 0.0774

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	HiSeC ${ }^{\text {тм }}$	SuperSOT ${ }^{\text {TM }}$-8
Bottomless ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {™ }}$	SyncFET ${ }^{\text {TM }}$
CoolFET ${ }^{\text {m }}$	MICROWIRE ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {™ }}$	РОРтм	UHC ${ }^{\text {™ }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {M }}$	PowerTrench ${ }^{\circledR}$	VCX ${ }^{\text {™ }}$
FACT ${ }^{\text {™ }}$	QFET ${ }^{\text {™ }}$	
FACT Quiet Series ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	
$\mathrm{FAST}^{\text {® }}$	Quiet Series ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	
GTO ${ }^{\text {¹ }}$	SuperSOT™-6	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

[^0]: Scale 1: 1 on letter size paper

