查询FDS9400供应商

捷多邦,专业PCB打样工厂,24小时加急出货

FAIRCHILD

SEMICONDUCTOR

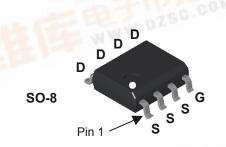
December 2001

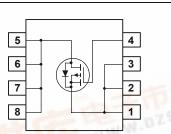
FDS9400A

30V P-Channel PowerTrench[®] MOSFET

General Description

This P-Channel MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications requiring a wide range of gave drive voltage ratings (4.5V - 25V).


Applications


- Power management
- Load switch
- Battery protection

Features

- -3.4 A, -30 V $R_{DS(ON)} = 130 \text{ m}\Omega @ \text{V}_{GS} = -10 \text{ V}$ $R_{DS(ON)} = 200 \text{ m}\Omega @ \text{V}_{GS} = -4.5 \text{ V}$
- Low gate charge (2.4nC typical)
- Fast switching speed
- High performance trench technology for extremely
 low R_{DS(ON)}
- High power and current handling capability

12mm

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

FDS9400A

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-30	V
V _{GSS}	Gate-Source Voltage		±25	V
I _D	Drain Current – Continuous	(Note 1a)	-3.4	A
	– Pulsed		-10	-121
P _D	Power Dissipation for Single Operation	(Note 1a)	2.5	W
		(Note 1b)	1.2	075C.V
		(Note 1c)	1	
T _J , T _{STG}	Operating and Storage Junction Temperation	ture Range	-55 to +175	°C
Therma	al Characteristics	- WO		
R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	50	°C/W
Γteja				0/ 1
R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1c)	125	°C/W

13"

.dzsc.com

FDS9400A

FDS9400A Rev B1(W)

2500 units


FDS9400A

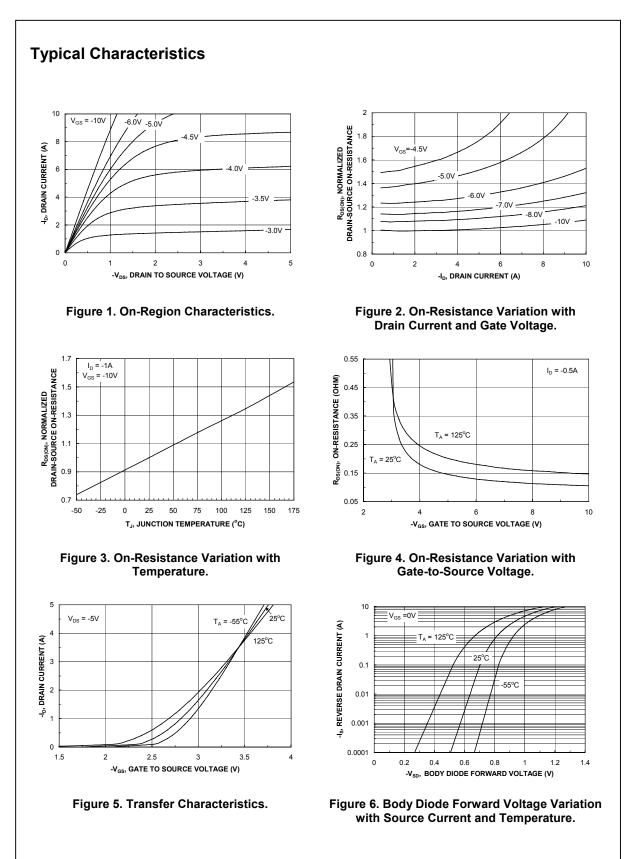
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics			J		
BV _{DSS}	Drain–Source Breakdown Voltage	V_{GS} = 0 V, I_{D} = -250 μ A	-30			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	I_D = –250 µA, Referenced to 25°C		-23		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 V$, $V_{GS} = 0 V$			-1	μA
IGSSF	Gate-Body Leakage, Forward	$V_{GS} = 25 V$, $V_{DS} = 0 V$			100	NA
I _{GSSR}	Gate–Body Leakage, Reverse	$V_{GS} = -25 V$, $V_{DS} = 0 V$			-100	NA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	-1	-1.8	-3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = –250 µA, Referenced to 25°C		4		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = -10 \text{ V}, \qquad I_D = -1.0 \text{ A}$		105	130	mΩ
	On–Resistance	$V_{GS} = -4.5 V$, $I_D = -0.5 A$		157	200	
		V_{GS} = -10 V, I_D = -1.0 A, T_J =125°C		147	210	
I _{D(on)}	On–State Drain Current	$V_{GS} = -10 V$, $V_{DS} = -5 V$	-5			A
g _{FS}	Forward Transconductance	$V_{DS} = -5 V$, $I_{D} = -3.4 A$		4.5		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = -15 V$, $V_{GS} = 0 V$,		205		pF
Coss	Output Capacitance	f = 1.0 MHz		55		pF
Crss	Reverse Transfer Capacitance			26		pF
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -15 V$, $I_D = -1 A$,		4.5	9	ns
tr	Turn–On Rise Time	$V_{GS} = -10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		12.5	23	ns
t _{d(off)}	Turn–Off Delay Time			11	20	ns
t _f	Turn–Off Fall Time			2	4	ns
Qg	Total Gate Charge	$V_{DS} = -15 V$, $I_D = -1 A$,		2.4	3.5	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -5 V$		1.0		nC
Q _{gd}	Gate–Drain Charge			0.7		nC
Drain-Se	ource Diode Characteristics	and Maximum Ratings			•	•
l _s	Maximum Continuous Drain–Sourc				-2.1	Α
	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = -2.1 A$ (Note 2)		-0.8	-1.2	V

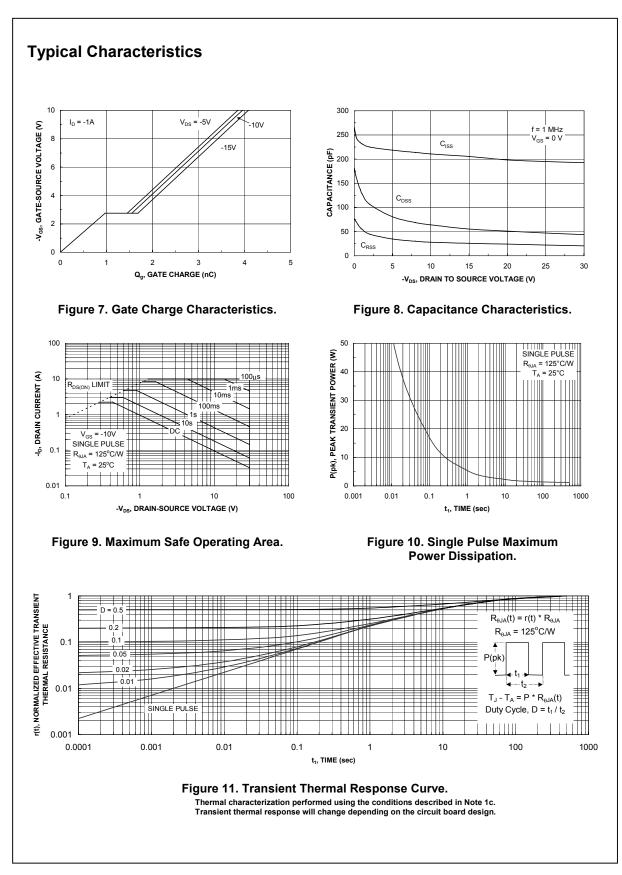
FDS9400A

Notes:

1. $R_{\theta,JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) 50°C/W when mounted on a 1in² pad of 2 oz copper




c) 125°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

FDS9400A

FDS9400A

TRADEMARKS				
8 8	ed and unregistered tradema austive list of all such trader	arks Fairchild Semiconductor on marks.	owns or is authorized to us	se and is
ACEx [™] Bottomless [™] CoolFET [™] <i>CROSSVOLT</i> [™] DenseTrench [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™] FACT [™] FACT Quiet Series [™]	FAST [®] FASTr [™] FRFET [™] GlobalOptoisolator [™] GTO [™] HiSeC [™] ISOPLANAR [™] LittleFET [™] MicroFET [™] MicroPak [™] MICROWIRE [™]	OPTOLOGIC [™] OPTOPLANAR [™] PACMAN [™] POP [™] Power247 [™] PowerTrench [®] QFET [™] QS [™] QT Optoelectronics [™] Quiet Series [™] SILENT SWITCHER [®]	SMART START [™] STAR*POWER [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [™] TruTranslation [™] UHC [™] UltraFET [®]	VCX™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.