查询FDT458P供应商

捷多邦,专业PCB打样工厂,24小时加急出货

June 2001

FDT458P

AIRCHILE

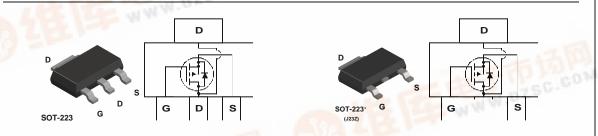
SEMICONDUCTOR IM

FDT458P

30V P-Channel PowerTrench[®] MOSFET

General Description

This P-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers, and battery chargers.


These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable R_{DS(ON)} specifications.

Applications

- Battery chargers
- Motor drives

Features

- 3.4 A, -30 V. $R_{DS(ON)} = 130 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 200 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$
- Fast switching speed
- Low gate charge (2.5 nC typical)
- High performance trench technology for extremely
 low R_{DS(ON)}
- High power and current handling capability in a widely used surface mount package

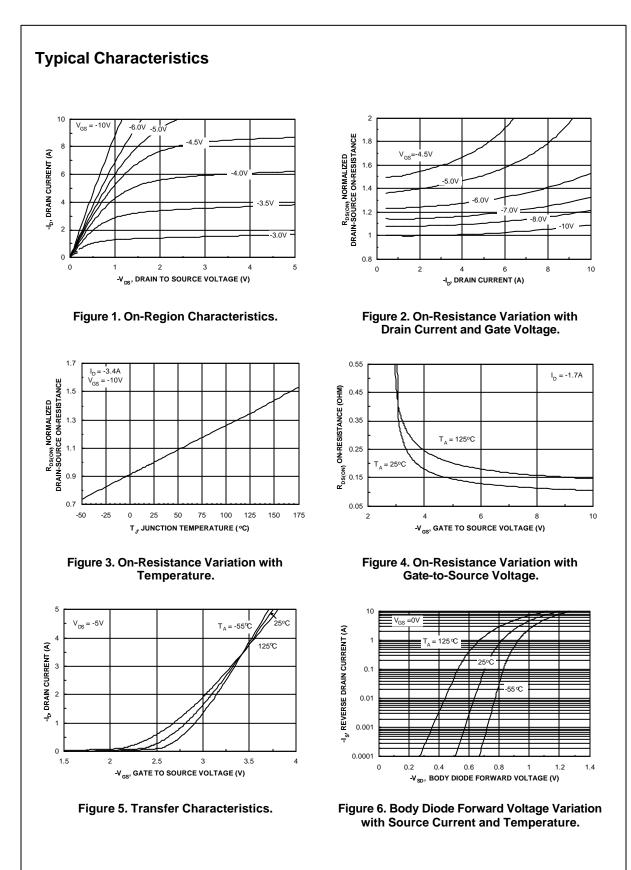
Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter D			Ratings	Units	
V _{DSS}	Drain-Source Voltage			- 30	V	
V _{GSS}	Gate-Source Voltage			±20	V	
l _D	Drain Currer	nt – Continuous	(Note 1a)	3.4	А	
		 Pulsed 		10	- 5	
PD	Maximum Power Dissipation		(Note 1a)	3.0	W	
			(Note 1b)	1.3	075C-0	
			(Note 1c)	1.1	44	
T_J, T_{STG}	Operating a	Dperating and Storage Junction Temperature Range		-55 to +150	°C	
Therma	I Charact	eristics				
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)		42	°C/W		
R _{ejc}	Thermal Resistance, Junction-to-Case (Note 1)			12		
Packag	e Marking	g and Ordering	g Information		·	
Device Marking		Device	Reel Size	Tape width	Quantity	
458P		FDT458P	13"	12mm	2500 units	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics			1		
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V, I_D = -250 \mu A$	-30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-23		mV/ºC
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μA
GSSF	Gate–Body Leakage, Forward	$V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate-Body Leakage, Reverse	$V_{GS} = -25 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)	·		•	•	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-1	-1.8	-3	V
<u>ΔVgs(th)</u> ΔTj	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance			105 157 147	130 200 210	mΩ
D(on)	On–State Drain Current	$V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$	-5			А
g _{FS}	Forward Transconductance	$V_{DS} = -5 V$, $I_{D} = -3.4 A$	-	3		S
-	Characteristics				l	
Ciss	Input Capacitance $V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$			205		pF
Coss	Output Capacitance	f = 1.0 MHz		55		pF
Crss	Reverse Transfer Capacitance			26		pF
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -15 V$, $I_D = -1 A$,		4.5	9	ns
tr	Turn–On Rise Time	$V_{GS} = -10 \text{ V}, R_{GEN} = 6 \Omega$		12.5	23	ns
t _{d(off)}	Turn–Off Delay Time			11	20	ns
t _f	Turn–Off Fall Time			2	4	ns
Qg	Total Gate Charge	$V_{DS} = -15 V$, $I_D = -3.4 A$,		2.5	3.5	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -10 \text{ V}$		0.7		nC
Q _{gd}	Gate-Drain Charge]		1		nC
Drain-Se	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain-Source	Diode Forward Current			-2.5	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = -2.5 A$ (Note 2)		-0.8	-1.2	V

 R_{0.0} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0.0} is guaranteed by design while R_{0CA} is determined by the user's board design.

 a) 42°C/W when mounted on a 1in² pad of 2 oz copper


2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

b) 95°C/W when mounted on a .0066 in² pad of 2 oz copper Ľ JJJ

c) 110°C/W when mounted on a minimum pad.

FDT458P

FDT458P

FDT458P

TRADEMARKS			
5 5	and unregistered trademarks Fair stive list of all such trademarks.	child Semiconductor owns or is au	thorized to use and is
ACEx™	FAST ®	OPTOPLANAR™	STAR*POWER™
Bottomless™	FASTr™	PACMAN™	Stealth™
CoolFET™	FRFET™	POP™	SuperSOT™-3
CROSSVOLT™	GlobalOptoisolator™	Power247™	SuperSOT [™] -6
DenseTrench™	GTO™	PowerTrench [®]	SuperSOT [™] -8
DOME™	HiSeC™	QFET™	SyncFET™
EcoSPARK™	ISOPLANAR™	QS™	TinyLogic™
E²CMOS™	LittleFET™	QT Optoelectronics [™]	TruTranslation™
EnSigna™	MicroFET™	Quiet Series [™]	UHC™
FACT™	MICROWIRE™	SILENT SWITCHER [®]	UltraFET [®]
FACT Quiet Series™	OPTOLOGIC™	SMART START™	VCX™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.