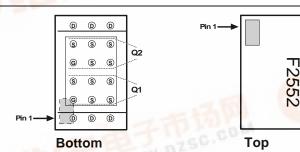


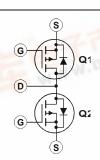
November 1999 ADVANCE INFORMATION

FDZ2552P

Dual P-Channel 2.5V Specified PowerTrench[™] BGA MOSFET

General Description


Combining Fairchild's advanced 2.5V specified PowerTrench process with state of the art BGA packaging, the FDZ2552P minimizes both PCB space and R_{DS(ON)}. This dual BGA MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, high current handling capability, ultralow profile packaging, low gate charge, and low R_{DS(ON)}.


Applications

- · Battery management
- Load switch
- Battery protection

Features

- -6 A, -20 V. $R_{DS(ON)} = 0.045~\Omega~@~V_{GS} = -4.5~V$ $R_{DS(ON)} = 0.075~\Omega~@~V_{GS} = -2.5~V.$
- Occupies only 0.10 cm² of PCB area.
 1/3 the area of SO-8.
- Ultra-thin package: less than 0.70 mm height when mounted to PCB.
- Outstanding thermal transfer characteristics: significantly better than SO-8.
- Ultra-low Q_g x R_{DS(ON)} figure-of-merit.
- High power and current handling capability.

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±12	V
I _D	Drain Current - Continuous	(Note 1a)	-6	Α
	Pulsed		-20	
P _D	Power Dissipation (Steady State)	(Note 1a)	3.0	W
T _J , T _{stg}	Operating and Storage Junction Temperature Range		-55 to +175	°C

Thermal Characteristics

R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	50	°C/W
R _{eJC}	Thermal Resistance, Junction-to-Case	(Note 1)	8	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
F2552	FDZ2552P	TBD	TBD	TBD

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics	1			l .	I.
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$	-20			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu A$, Referenced to $25^{\circ}C$		28		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μΑ
I _{GSSF}	Gate–Body Leakage Current, Forward	$V_{GS} = -12 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
I _{GSSR}	Gate–Body Leakage Current, Reverse	$V_{GS} = 12 \text{ V}$ $V_{DS} = 0 \text{ V}$			100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.4	-0.9	-1.5	V
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -6 \text{ A}$ $V_{GS} = -2.5 \text{ V}, I_D = -4.5 \text{ A}$		0.036 0.060	0.045 0.075	Ω
Drain-S	ource Diode Characteristics a	and Maximum Ratings				
Is	Maximum Continuous Drain-Source	Diode Forward Current			-2.5	Α
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -2.5 \text{ A} \text{(Note 2)}$		-0.77	-1.2	V

Notes:

R_{BJA} is a function of the junction-to-case (R_{BJC}), case-to-ambient (R_{BCA}) and the PC Board (R_{BBA}) thermal resistance where the case thermal reference is defined the top surface of the package. R_{BJC} is guaranteed by design while R_{BCA} and R_{BBA} are determined by the user's design. Maximum current ratings assume single device operation.

⁽a). $R_{\theta JA} = 50^{\circ} \text{C/W}$ (steady-state) when mounted on 1 in² of 2 oz. copper.

^{2.} Pulse Test: Pulse Width < 300μs, Duty Cycle < 2.0%

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} E^2 CMOS^{TM} & PowerTrench^{\circledR} \\ FACT^{TM} & QFET^{TM} \\ FACT \ Quiet \ Series^{TM} & QS^{TM} \end{array}$

 $\begin{array}{lll} \mathsf{FAST}^{\circledast} & \mathsf{Quiet}\,\mathsf{Series^{\mathsf{TM}}} \\ \mathsf{FASTr^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}3} \\ \mathsf{GTO^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}6} \\ \mathsf{HiSeC^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}8} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.