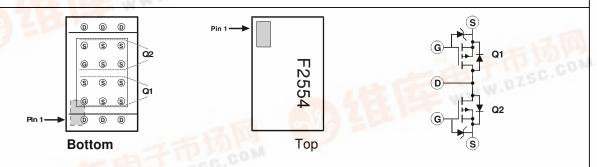
捷多邦,专业PCB打样工厂,24小时加急出货

SEMICONDUCTOR®

FDZ2554PZ

Monolithic Common Drain P-Channel 2.5V Specified PowerTrench® BGA MOSFET

General Description


Combining Fairchild's advanced 2.5V specified PowerTrench process with state-of-the-art BGA packaging, the FDZ2554PZ minimizes both PCB space and R_{DS(ON)}. This monolithic common drain BGA MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, high current handling capability, ultra-low profile packaging, low gate charge, and low R_{DS(ON)}.

Applications

- Battery management
- Load switch
- Battery protection

Features

- $-6.5 \text{ A}, -20 \text{ V}. \text{ R}_{\text{DS(ON)}} = 28 \text{ m}\Omega \text{ @ V}_{\text{GS}} = -4.5 \text{ V}$ $R_{DS(ON)} = 45 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$
- >4800V ESD Protection
- Occupies only 0.10 cm² of PCB area: 1/3 the area of SO-8
- Ultra-thin package: less than 0.80 mm height when mounted to PCB
- Outstanding thermal transfer characteristics: significantly better than SO-8
- Ultra-low Q_g x R_{DS(ON)} figure-of-merit
- · High power and current handling capability

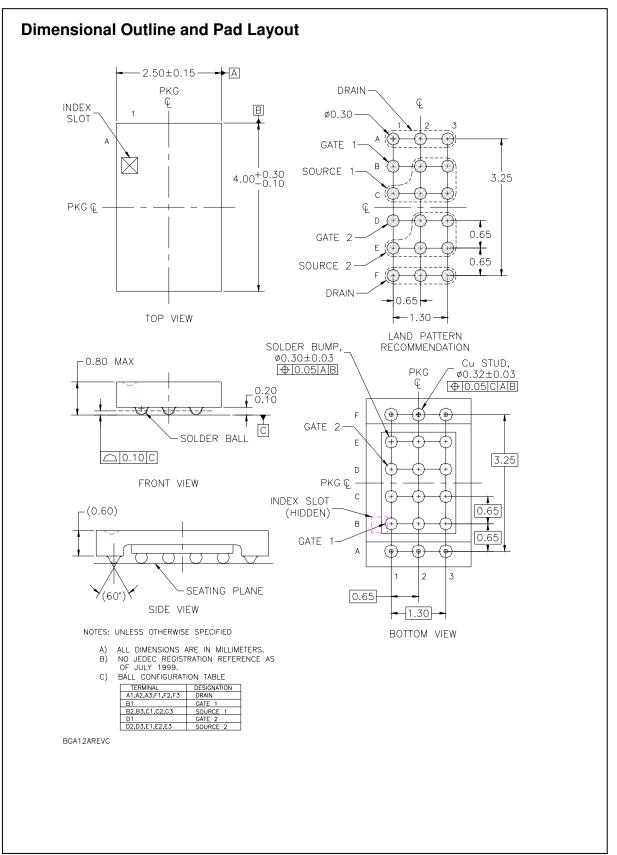
Absolute Maximum Ratings T_A=25°C unless otherwise noted

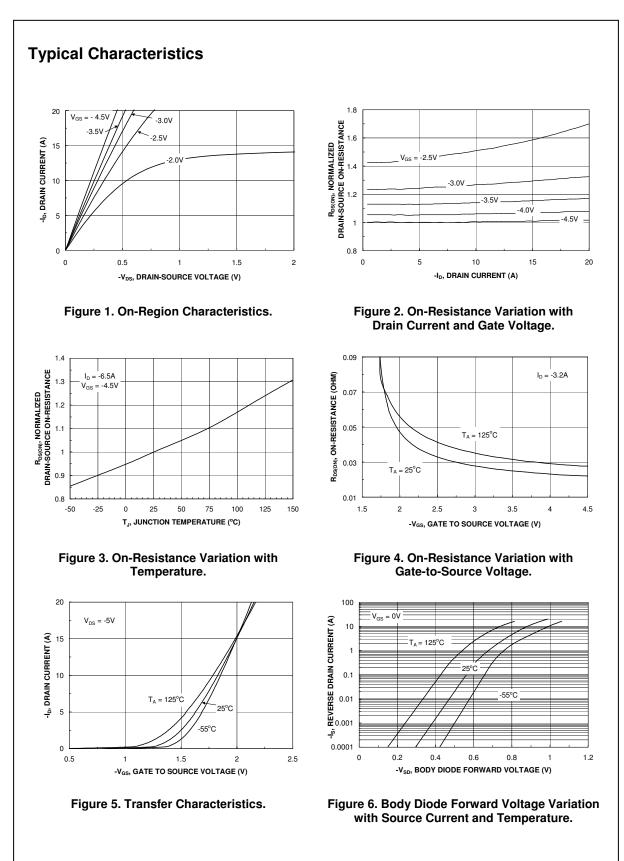
Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±12	V
ID	Drain Current – Continuous	(Note 1a)	-6.5	A
	– Pulsed		-20	A750-0-
PD	Power Dissipation (Steady State)	(Note 1a)	2.1	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range		<u>-55 to</u> +150	°C

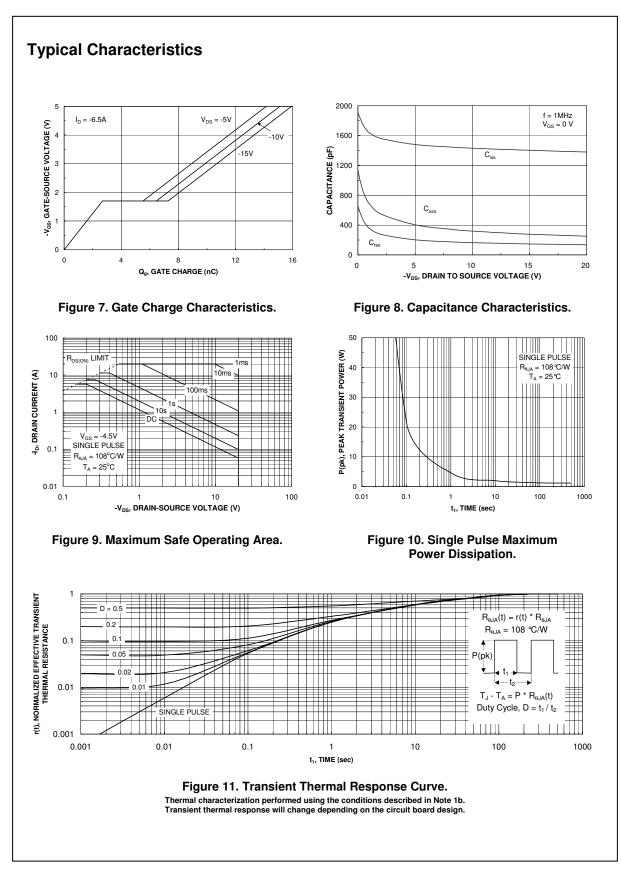
Thermal Characteristics

R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	60	°C/W
$R_{\theta JB}$	Thermal Resistance, Junction-to-Ball	(Note 1b)	6.3	
R _{eJC}	Thermal Resistance, Junction-to-Case	(Note 1)	0.6	

Package Marking and Ordering Information


Device Marking	Device	Reel Size	Tape width	Quantity
2554Z	FDZ2554PZ	7"	12mm	3000 units


dzsc.com


August 2004

Off Chara	Parameter	Test Conditions	Min	Тур	Мах	Units
Uli Chara	octeristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = -250 \mu A$	-20			V
ΔBV_{DSS} $\Delta T_{.1}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-13		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V$, $V_{GS} = 0 V$			-1	μA
GSS	Gate-Body Leakage	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μA
On Chara	ICTERISTICS (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-0.6	-0.8	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu A$, Referenced to 25°C		3		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = -4.5 \text{ V}, I_D = -6.5 \text{ A}$		21	28	mΩ
	On-Resistance	$V_{GS} = -2.5 \text{ V}, I_D = -5 \text{ A}$		36	45	
0	Forward Transconductance	$V_{GS} = -4.5 \text{ V}, I_D = -6.5 \text{ A}, T_J = 125^{\circ}\text{C}$ $V_{DS} = -5 \text{ V}, I_D = -6.5 \text{ A}$		30 24	43	S
g _{FS}	•	$V_{\rm DS} = -5 V$, $I_{\rm D} = -0.5 A$		24		5
	Characteristics Input Capacitance		1	1430		~ Г
Ciss		$V_{DS} = -10 V$, $V_{GS} = 0 V$,				pF
	Output Capacitance	f = 1.0 MHz		320		pF
C _{rss}	Reverse Transfer Capacitance			170		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, \qquad f = 1.0 \text{ MHz}$		9.2		Ω
Switching	g Characteristics (Note 2)		•			
t _{d(on)}	Turn–On Delay Time	$V_{\text{DD}} = -10 \ V, \qquad I_{\text{D}} = -1 \ A, \label{eq:VDD}$		15	26	ns
r	Turn–On Rise Time	$V_{GS} = -4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$		9	18	ns
t _{d(off)}	Turn–Off Delay Time	-		60	100	ns
ł	Turn–Off Fall Time			37	60	ns
Qg	Total Gate Charge	$V_{DS} = -10 V$, $I_D = -6.5 A$,		15	21	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -4.5 V$		3		nC
Q _{gd}	Gate-Drain Charge			4		nC
Drain–So	urce Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain-Source	e Diode Forward Current			-1.75	А
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = -1.75 A$ (Note 2)		-0.7	-1.2	V
rr	Reverse Recovery Time	$I_{F} = -6.5 A,$		25		ns
Q _{rr}	Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$		10		nC

Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

TRADEMARKS					
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.					
ACEx [™] ActiveArray [™] Bottomless [™] CoolFET [™] CROSSVOLT [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™] FACT [™] FACT Quiet Seri Across the board The Power France	d. Around the world.™	ISOPLANAR [™] LittleFET [™] MICROCOUPLER [™] MicroFET [™] MicroPak [™] MICROWIRE [™] MSX [™] MSXPro [™] OCX [™] OCX [™] OCXPro [™] OPTOLOGIC [®] OPTOPLANAR [™] PACMAN [™]	Power247 TM PowerSaver TM PowerTrench [®] QFET [®] QS TM QT Optoelectronics TM Quiet Series TM RapidConfigure TM RapidConnect TM μ SerDes TM SILENT SWITCHER [®] SMART START TM SPM TM	SuperFET TM SuperSOT TM -3 SuperSOT TM -6 SuperSOT TM -8 SyncFET TM TinyLogic [®] TINYOPTO TM TruTranslation TM UHC TM UltraFET [®] VCX TM	
Programmable Active Droop™		POP™	Stealth™		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.