Provisional Data 急性的。PD 9.809

International TOR Rectifier

HEXFET® TRANSISTOR

IRFI260

N-CHANNEL

200 Volt, 0.060Ω , HEXFET

HEXFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high transconductance.

HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits and virtually any application where high reliability is required.

The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heatsink. This improves thermal efficiency and reduces drain capacitance.

Product Summary

Part Number	BVDSS	RDS(on)	lD
IRFI260	200V	0.060Ω	45A*

Features:

- Hermetically Sealed
- Electrically Isolated
- Simple Drive Requirements
- Ease of Paralleling
- Ceramic Eyelets

Absolute Maximum Ratings

	Parameter	IRFI260	Units		
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	45*			
ID @ VGS = 10V, TC = 100°C	29	Α			
IDM	Pulsed Drain Current ①	180			
PD @ TC = 25°C	Max. Power Dissipation	300	W		
You Maria	Linear Derating Factor	2.4	W/K ⑤		
VGS	Gate-to-Source Voltage	±20	V		
EAS	Single Pulse Avalanche Energy ②	700	mJ		
IAR	Avalanche Current ①	45	Α		
EAR	Repetitive Avalanche Energy ①	30	mJ		
dv/dt	dv/dt Peak Diode Recovery dv/dt 3		V/ns		
TX PDF	Operating Junction	-55 to 150			
Storage Temperature Range			∘C		
pdf.dzsc.com	Lead Temperature 300 (0.063	in. (1.6mm) from case for 10 sec.)			
	Weight	10.9 (typical)	g		

IRFI260 Device

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Parameter		Min.	Тур.	Max.	Units	Test Conditions	
BVDSS	Drain-to-Source Breakdown Voltage	200		_	V	VGS = 0V, II	D = 1.0 mA
ΔBVDSS/ΔTJ	Temp. Coefficient of Breakdown Voltage	_	0.24	_	V/°C	Reference to 25°C, ID = 1.0 mA	
RDS(on)	Static Drain-to-Source	_		0.060		VGS = 10V, ID =29A ④	
	On-State Resistance	_	-	0.068	Ω	VGS = 10V	, I _D = 45A
VGS(th)	Gate Threshold Voltage	2.0	-	4.0	٧	V _{DS} = V _{GS} ,	I _D = 250μA
9fs	Forward Transconductance	22	l	_	S (℧)	V _{DS} ≥ 15V, I _I	DS = 29A ④
IDSS	Zero Gate Voltage Drain Current	_	l	25	μΑ	V _{DS} =0.8 x Max	Rating,VGS=0V
		_	-	250		V _{DS} = 0.8 x	Max Rating
						VGS = 0V, 1	J = 125°C
IGSS	Gate-to-Source Leakage Forward	_		100	nA	Vgs =	= 20V
IGSS	Gate-to-Source Leakage Reverse	_	-	-100		VGS =	-20V
Qg	Total Gate Charge	_	l	230		VGS =10V, ID = 45A	
Qgs	Gate-to-Source Charge	_		40	nC	V _{DS} = Max. Rating x 0.5	
Qgd	Gate-to-Drain ("Miller") Charge	_	-	110			
td(on)	Turn-On Delay Time	_	l	29		V _{DD} = 100\	/, I _D =45A,
tr	Rise Time	_		120	ns	$R_G = 2.35\Omega$,	VGS =10V
td(off)	Turn-Off Delay Time	_	-	110			
tf	FallTime	_		92			
LD	Internal Drain Inductance	_	8.7	_		Measured from the drain lead, 6mm (0.25 in.) from package to center of die.	Modified MOSFET symbol showing the internal inductances.
LS	Internal Source Inductance	_	8.7	_	nH	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.	S S S S S S S S S S S S S S S S S S S
Ciss	Input Capacitance	_	5100	_		VGS = 0V, \	/DS = 25V
Coss	Output Capacitance	_	1100		pF	f = 1.0 MHz	
C _{rss}	Reverse Transfer Capacitance	_	280	_			

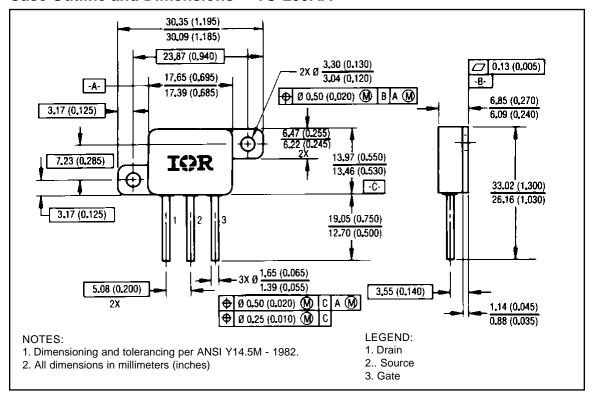
Source-Drain Diode Ratings and Characteristics

Parameter		Min.	Тур.	Max.	Units	Test Conditions
Is	Continuous Source Current (Body Diode)		_	45*		Modified MOSFET symbol showing the
ISM	Pulse Source Current (Body Diode) ①		_	180	Α	integral reverse p-n junction rectifier.
VSD	Diode Forward Voltage		_	1.8	V	Tj = 25°C, IS = 45A, VGS = 0V ④
trr	Reverse Recovery Time		_	420	ns	$T_j = 25^{\circ}C$, $I_F = 45A$, $di/dt \le 100A/\mu s$
QRR	RR Reverse Recovery Charge		_	4.9	μС	V _{DD} ≤ 50V ④
ton	Forward Turn-On Time Intrinsic tur	d Turn-On Time Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.				

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
R _{th} JC	Junction-to-Case		_	0.42		
RthJA	Junction-to-Ambient		_	30	K/W ⑤	typical socket mount
RthCS	Case-to-Sink	l	0.21	_		mounting surface flat, smooth

⑤ K/W = °C/W W/K = W/°C


① Repetitive Rating; Pulse width limited by maximum junction temperature.

② @ VDD = 50V, Starting TJ = 25°C, EAS = $[0.5 * L * (I_L^2) * [BVDSS/(BVDSS-VDD)]$ Peak IL = 45A, VGS = 10V, 25 \leq RG \leq 200 Ω

③ I_{SD} ≤ 45A, di/dt ≤ 130 A/ μ s, V_{DD} ≤ BV_{DSS}, T_J ≤ 150°C Suggested RG = 2.35 Ω

④ Pulse width ≤ 300 μ s; Duty Cycle ≤ 2%

Case Outline and Dimensions —TO-259AA

CAUTION BERYLLIA WARNING PER MIL-PRF-19500

Packages containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxides packages shall not be placed in acids that will produce fumes containing beryllium.

International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371