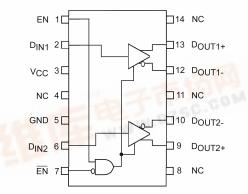


AIRCHIL SEMICONDUCTOR **FIN1025** 3.3V LVDS 2-Bit High Speed Differential Driver **General Description Features** This dual driver is designed for high speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The driver translates LVTTL signal levels to LVDS levels with a typical differential output swing of 350mV which provides low EMI at ultra low power dissipation even at high frequencies. This device is ideal for high speed trans-

fer of clock and data. The FIN1025 can be paired with its companion receiver, the FIN1026, or any other LVDS receiver.


June 2002 Revised June 2002

- Greater than 400Mbs data rate
- Flow-through pinout simplifies PCB layout
- 3.3V power supply operation
- 0.4ns maximum differential pulse skew
- 1.7ns maximum propagation delay
- Low power dissipation
- Power-Off protection
- Meets or exceeds the TIA/EIA-644 LVDS standard
- 14-Lead TSSOP package saves space

Ordering Code:

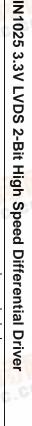
Order Number Package Number Package Description FIN1025MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

Pin Name	Description
D _{IN1} , D _{IN2} ,	LVTTL Data Inputs
D _{OUT1+} , D _{OUT2+}	Non-Inverting Driver Outputs
D _{OUT1-} , D _{OUT2-}	Inverting Driver Outputs
EN	Driver Enable Pin
EN	Inverting Driver Enable Pin
V _{CC}	Power Supply
GND	Ground
NC	No Connect

Truth Table


Inputs		Outputs		
EN	D _{IN}	D _{OUT+}	D _{OUT-}	
L or OPEN	Н	Н	11 D P	
L or OPEN	L	AL AL	Н	
L or OPEN	OPEN	L	Н	
Н	Х	Z	Z	
Х	Х	Z	Z	
	EN L or OPEN L or OPEN	EN DIN L or OPEN H L or OPEN L	EN DIN DOUT+ L or OPEN H H L or OPEN L L L or OPEN OPEN L	

L = LOW Logic Level

X = Don't Care

Z = High Impedance

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
LVTTL DC Input Voltage (V _{IN})	-0.5V to +6V
LVDS DC Output Voltage (V _{OUT})	-0.5V to 4.6V
Driver Short Circuit Current (I _{OSD})	Continuous
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Max Junction Temperature (T _J)	150°C
Lead Temperature (T _L)	260°C
(Soldering, 10 seconds)	
ESD (Human Body Model)	10,000V
ESD (Machine Model)	600V

Recommended Operating Conditions

Supply Voltage (V _{CC})
Input Voltage (V _{IN})
Operating Temperature (T _A)

3.0V to 3.6V \$0 to V_{CC} $-40^\circ C$ to $+85^\circ C$

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

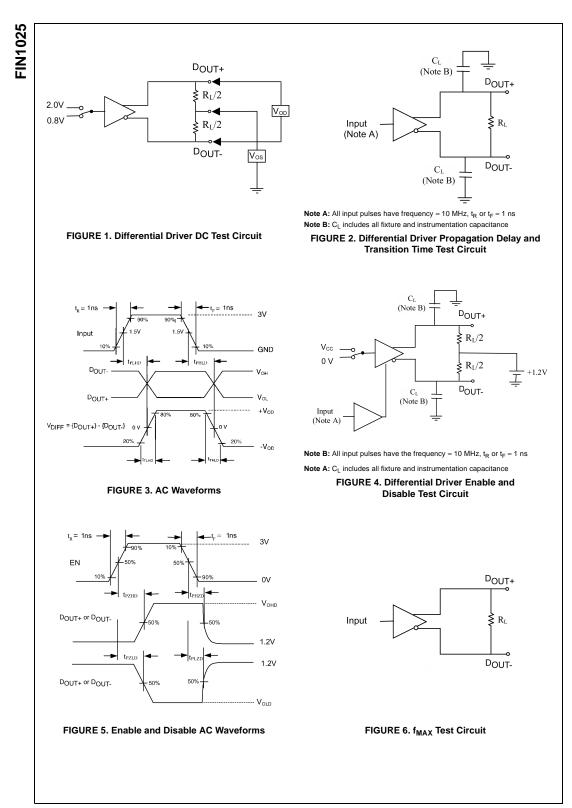
DC Electrical Characteristics

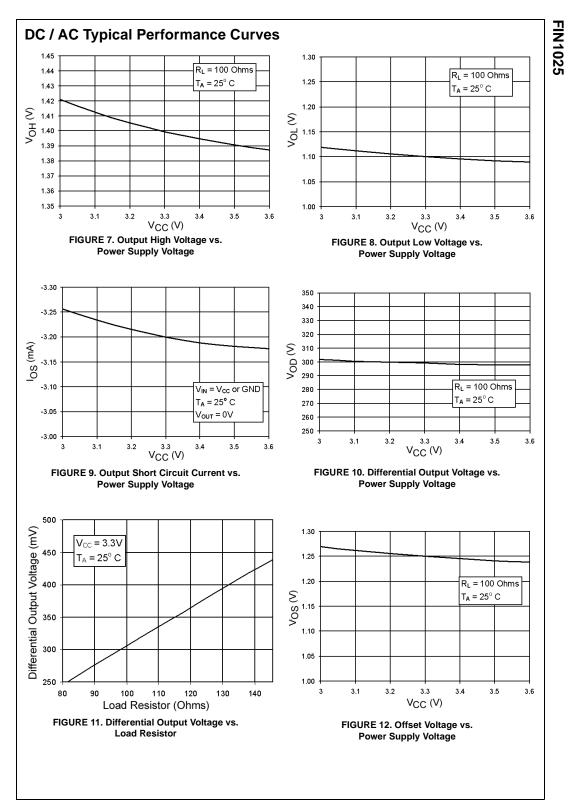
Over supply voltage and operating temperature ranges, unless otherwise specified

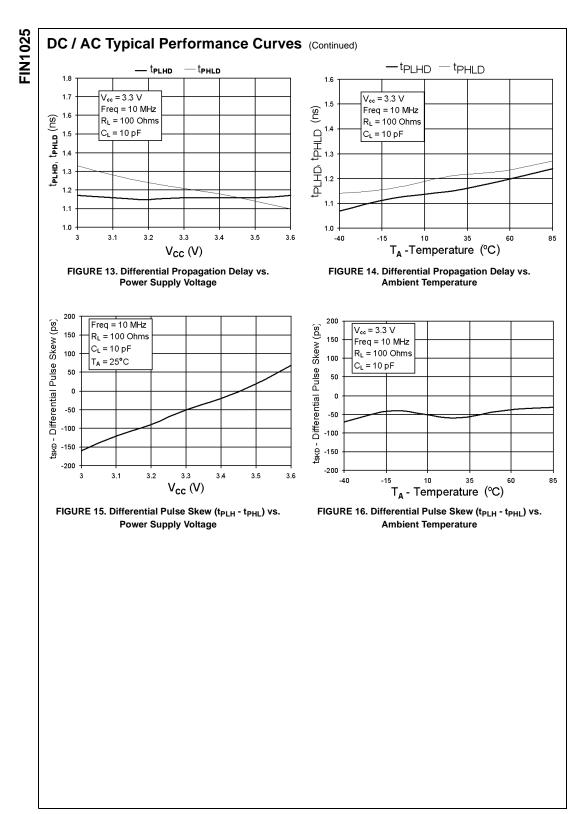
Symbol	Parameter	Test Conditions	Min	Typ (Note 2)	Max	Units
V _{OD}	Output Differential Voltage		250	340	450	mV
ΔV_{OD}	V _{OD} Magnitude Change from Differential LOW-to-HIGH	$R_L = 100\Omega$, Driver Enabled,		1.4	25	mV
V _{OS}	Offset Voltage	See Figure 1	1.125	1.25	1.375	V
ΔV_{OS}	Offset Magnitude Change from Differential LOW-to-HIGH			1.2	25	mV
V _{OH}	HIGH Output Voltage	$V_{IN} = V_{CC}, R_L = 100\Omega$		1.4	1.6	V
V _{OL}	LOW Output Voltage	$V_{IN} = 0V, R_L = 100\Omega$	0.9	1.05		V
I _{OFF}	Power Off Output Current	$V_{CC} = 0V, V_{OUT} = 0V \text{ or } 3.6V$	-20		20	μA
los	Short Circuit Output Current	V _{OUT} = 0V, Driver Enabled		-3	-6	mA
		V _{OD} = 0V, Driver Enabled		-3.5	-6	- IIIA
V _{IH}	Input HIGH Voltage		2.0		V _{CC}	V
V _{IL}	Input LOW Voltage		GND		0.8	V
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{CC}$	-20		20	μA
l _{oz}	Disabled Output Leakage Current	V _{OUT} = 0V or 3.6V	-20		20	μA
I _{I(OFF)}	Power-Off Input Current	$V_{CC} = 0V, V_{IN} = 0V \text{ or } 3.6V$	-20		20	μA
VIK	Input Clamp Voltage	I _{IK} = -18 mA	-1.5	-0.8		V
I _{CC}	Power Supply Current	No Load, $V_{IN} = 0V$ or V_{CC} , Driver Enabled		5	8	
		$R_L = 100 \ \Omega$, Driver Disabled		1.7	4	mA
		$R_L = 100 \Omega$, $V_{IN} = 0V$ or V_{CC} , Driver Enabled		9	16	

Note 2: All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3V$.

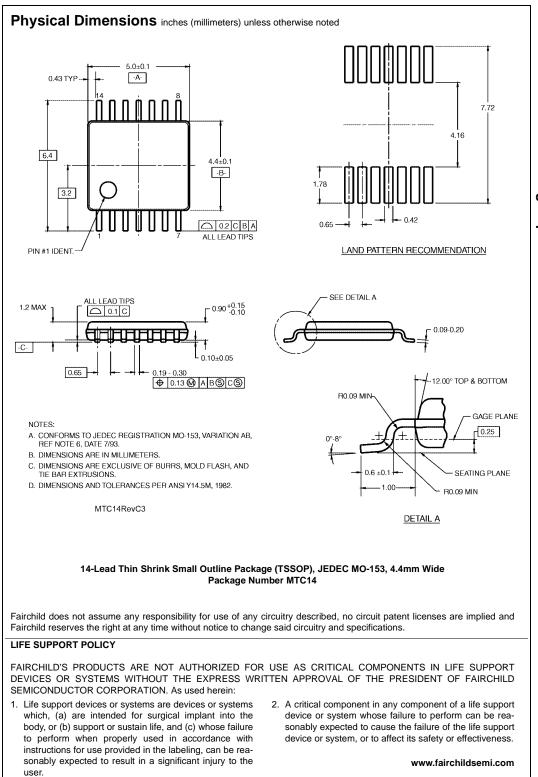
Symbol	Parameter	Test Conditions	Min	Typ (Note 3)	Max	Units
t _{PLHD}	Differential Propagation Delay LOW-to-HIGH		0.6	1.1	1.7	ns
t _{PHLD}	Differential Propagation Delay HIGH-to-LOW		0.6	1.2	1.7	ns
t _{TLHD}	Differential Output Rise Time (20% to 80%)	$R_L = 100 \Omega$, $C_L = 10 pF$,	0.4		1.2	ns
t _{THLD}	Differential Output Fall Time (80% to 20%)	See Figure 2 (Note 7), and Figure 3	0.4		1.2	ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}				0.4	ns
t _{SK(LH)} t _{SK(HL)}	Channel-to-Channel Skew (Note 4)			0.05	0.3	ns
t _{SK(PP)}	Part-to-Part Skew (Note 5)				1.0	ns
f _{MAX}	Maximum Frequency (Note 6)	$R_L = 100\Omega$, See Figure 6 (Note 7)	200	250		MHz
t _{ZHD}	Differential Output Enable Time from Z to HIGH			1.7	5.0	ns
t _{ZLD}	Differential Output Enable Time from Z to LOW	$R_L = 100\Omega$, $C_L = 10$ pF,		1.7	5.0	ns
t _{HZD}	Differential Output Disable Time from HIGH to Z	See Figure 4 (Note 7), and Figure 5		2.7	5.0	ns
t _{LZD}	Differential Output Disable Time from LOW to Z			2.7	5.0	ns
CIN	Input Capacitance			4.2		pF
COUT	Output Capacitance			5.2		pF


Note 3: All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3V$.


Note 4: t_{SK(LH)}, t_{SK(HL)} is the skew between specified outputs of a single device when the outputs have identical loads and are switching in the same direction.


Note 5: $t_{SK(PP)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits. Note 6: f_{MAX} criteria: Input $t_R = t_F < 1ns$, 0V to 3V, 50% Duty Cycle; Output $V_{OD} > 250$ mv, 45% to 55% Duty Cycle; all switching in phase channels.

Note 7: Test Circuits in Figures 2, 4, 6 are simplified representations of test fixture and DUT loading.


www.fairchildsemi.com

www.fairchildsemi.com

