

May 2000

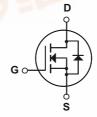
FQA19N20L

200V LOGIC N-Channel MOSFET

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supply, motor control.


Features

- 25A, 200V, R_{DS(on)} = 0.14Ω @V_{GS} = 10 V
- Low gate charge (typical 27 nC)
- Low Crss (typical 30 pF)
- Fast switching
- 100% avalanche tested
- · Improved dv/dt capability
- Low level gate drive requirement allowing direct operation from logic drivers

GDS

TO-3P FQA Series

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQA19N20L	Units
V _{DSS}	Drain-Source Voltage	1 9	200	V
I _D	Drain Current - Continuous (T _C = 25°C)		25	Α
	- Continuous (T _C = 100°C)		15.8	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	100	Α
V _{GSS}	Gate-Source Voltage		± 20	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	250	mJ
I _{AR}	Avalanche Current	(Note 1)	25	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		19	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		5.5	V/ns
P _D	Power Dissipation (T _C = 25°C)		190	W
	- Derate above 25°C		1.52	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
Tı	Maximum lead temperature for soldering purposes,		300	°C
'L	1/8" from case for 5 seconds	from case for 5 seconds		

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.66	°C/W
R _{0CS}	Thermal Resistance, Case-to-Sink	0.24		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	200			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.16		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 200 V, V _{GS} = 0 V			1	μА
		V _{DS} = 160 V, T _C = 125°C			10	μА
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
On Cha	racteristics		•			
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	1.0		2.0	V
R _{DS(on)}	Static Drain-Source	V _{GS} = 10 V, I _D = 12.5 A		0.11	0.14	
D3(0II)	On-Resistance	$V_{GS} = 5 \text{ V}, I_D = 12.5 \text{ A}$ (Note 4)		0.12	0.15	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 30 V, I _D = 12.5 A		20		S
C _{iss}	Input Capacitance Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		1700 220	2200 290	pF pF
C _{rss}	Reverse Transfer Capacitance	1 - 1.0 WILL		30	40	pF
	ing Characteristics	T		35	90	no
	Turn-On Delay Time			ან	80	ns
	Turn On Bigg Time	V _{DD} = 100 V, I _D = 21 A,		200	610	no
t _r	Turn-On Rise Time	$R_G = 25 \Omega$		300	610	ns
t _r	Turn-Off Delay Time			130	270	ns
t _r t _{d(off)} t _f	Turn-Off Delay Time Turn-Off Fall Time	$R_G = 25 \Omega$ (Note 4, 5)		130 180	270 370	ns ns
$\begin{array}{c} t_r \\ t_{d(off)} \\ t_f \\ Q_g \end{array}$	Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, I_D = 21 \text{ A},$		130 180 27	270	ns ns nC
t _{d(off)} t _f Q _g Q _{gs}	Turn-Off Delay Time Turn-Off Fall Time	$R_G = 25 \Omega$ (Note 4, 5)		130 180	270 370 35	ns ns
$\begin{array}{c} t_r \\ t_{d(off)} \\ t_f \\ Q_g \\ Q_{gs} \\ Q_{gd} \\ \end{array}$	Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, I_D = 21 \text{ A},$ $V_{GS} = 5 \text{ V}$ (Note 4, 5)		130 180 27 5.8	270 370 35	ns ns nC
t_r $t_{d(off)}$ t_f Q_g Q_{gs}	Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$R_{G} = 25 \ \Omega $ (Note 4, 5) $V_{DS} = 160 \ V, I_{D} = 21 \ A, $ (Note 4, 5) $V_{GS} = 5 \ V $ (Note 4, 5) and Maximum Ratings		130 180 27 5.8	270 370 35	ns ns nC
t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd}	Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, I_D = 21 \text{ A}, V_{GS} = 5 \text{ V}$ (Note 4, 5) and Maximum Ratings of the Forward Current		130 180 27 5.8 11.2	270 370 35 	ns ns nC nC
t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S l_S	Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics as Maximum Continuous Drain-Source Dio	$R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, I_D = 21 \text{ A}, V_{GS} = 5 \text{ V}$ (Note 4, 5) and Maximum Ratings of the Forward Current		130 180 27 5.8 11.2	270 370 35 25	ns ns nC nC
t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S	Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode Faxing Diode Faxing Diode Faxing Delay Time Diode Faxing Delay Time Diode Faxing Delay Time Delay	$R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 160 \text{ V}, I_D = 21 \text{ A}, V_{GS} = 5 \text{ V}$ (Note 4, 5) and Maximum Ratings the Forward Current Forward Current		130 180 27 5.8 11.2	270 370 35 25 100	ns ns nC nC nC A A

- **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 0.6mH, I_{AS} = 25A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} \leq 21A, di/dt \leq 300A/μs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300μs, Duty cycle \leq 2% 5. Essentially independent of operating temperature

©2000 Fairchild Semiconductor International Rev. A, May 2000

Typical Characteristics

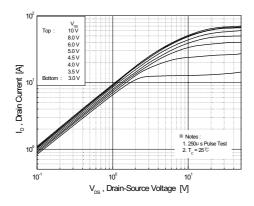


Figure 1. On-Region Characteristics

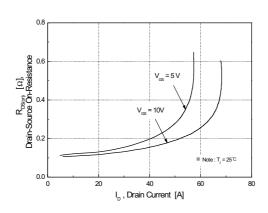


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

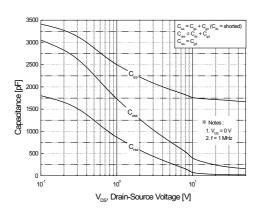


Figure 5. Capacitance Characteristics

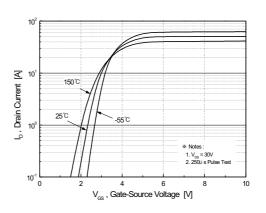


Figure 2. Transfer Characteristics

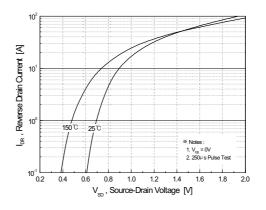


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

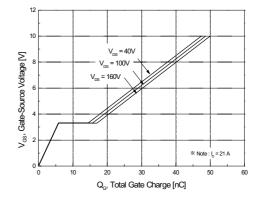
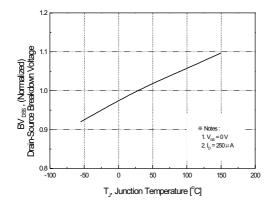
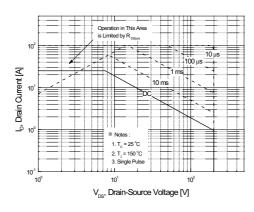



Figure 6. Gate Charge Characteristics

©2000 Fairchild Semiconductor International


Typical Characteristics (Continued)

2.5
(Description of the content of t

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

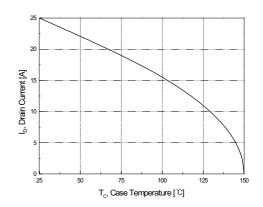
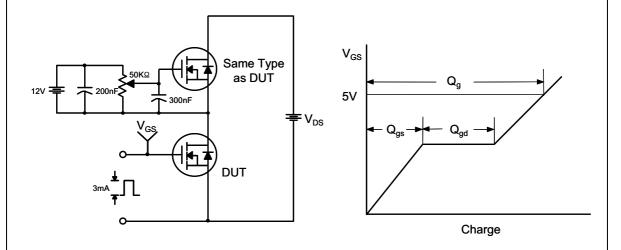
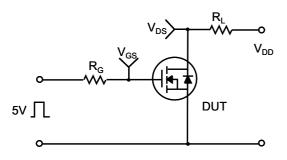
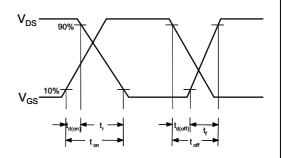


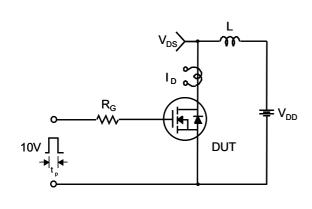
Figure 9. Maximum Safe Operating Area

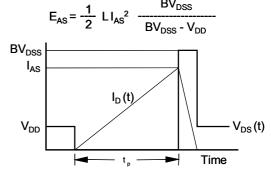

Figure 10. Maximum Drain Current vs. Case Temperature

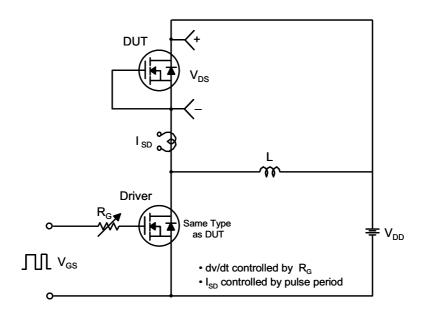

Figure 11. Transient Thermal Response Curve

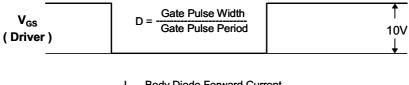

©2000 Fairchild Semiconductor International Rev. A, May 2000

Gate Charge Test Circuit & Waveform

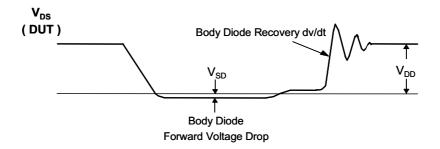



Resistive Switching Test Circuit & Waveforms

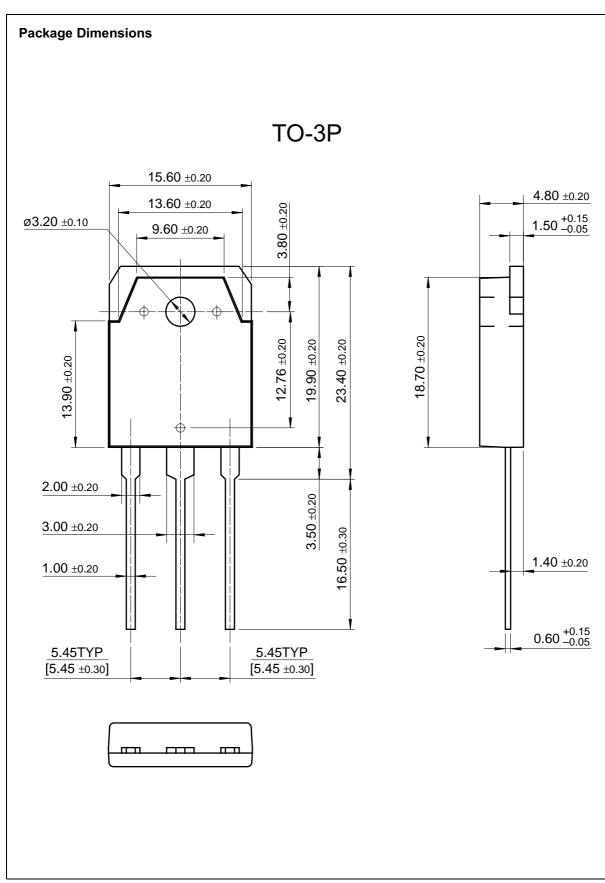



Unclamped Inductive Switching Test Circuit & Waveforms





Peak Diode Recovery dv/dt Test Circuit & Waveforms



©2000 Fairchild Semiconductor International Rev. A, May 2000

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FASTr™	QFET™	VCX™
Bottomless™	GlobalOptoisolator™	QS™	
CoolFET™	GTO™	QT Optoelectronics™	
CROSSVOLT™	HiSeC™	Quiet Series™	
DOME™	ISOPLANAR™	SuperSOT™-3	
E ² CMOS TM	MICROWIRE™	SuperSOT™-6	
EnSigna™	OPTOLOGIC™	SuperSOT™-8	
FACT™	OPTOPLANAR™	SyncFET™	
FACT Quiet Series™	POP™	TinyLogic™	
FAST®	PowerTrench®	UHC™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.