

November 2003 Revised July 2004

FSA1156 • FSA1157 Low R_{ON} Low Voltage SPST Analog Switch

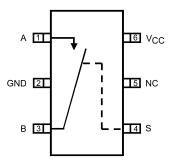
General Description

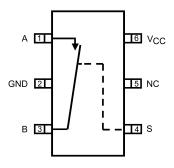
The FSA1156 and FSA1157 are high performance Single Pole/Single Throw (SPST) analog switches. The devices feature ultra low R_{ON} of 0.75Ω (typical) and will operate over the wide V_{CC} range of 1.65V to 5.5V. The devices are fabricated with sub-micron CMOS technology to achieve fast switching speeds. The select input is TTL level compatible. The FSA1156 has Normally Open operation and the FSA1157 has Normally Closed operation.

Features

- \blacksquare Maximum 0.9 Ω On Resistance (R_{ON}) for 4.5V supply at 25°C
- 0.3Ω maximum R_{ON} flatness for 4.5V supply
- Broad V_{CC} operating range: 1.65V to 5.5V
- Fast turn-on and turn-off time
- Over-voltage tolerant TTL compatible control input
- Available in SC70 and MicroPak™ space saving surface mount packages

Ordering Code:

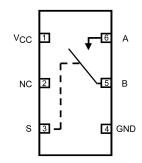

Order Number	Product Code Top Mark	Package Number	Package Description	Supplied As		
FSA1156P6	156	MAA06A	6-Lead SC70, EIAJ SC88, 1.25mm Wide	250 Units on Tape and Reel		
FSA1156P6X	156	MAA06A	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel		
FSA1156L6X	EH	MAC06A	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel		
FSA1157P6	157	MAA06A	6-Lead SC70, EIAJ SC88, 1.25mm Wide	250 Units on Tape and Reel		
FSA1157P6X	157	MAA06A	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel		
FSA1157L6X	EJ	MAC06A	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel		


Analog Symbols

Pin Assignments for SC70 Package

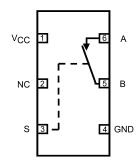
(Top View) FSA1156 (Normally Open)

Pin Assignments for SC70 Package


(Top View) FSA1157 (Normally Closed)

Truth Table

Control Input (S)	Function of FSA1156	Function of FSA1157		
L	OFF	ON		
Н	ON	OFF		


H = HIGH Logic Level L = LOW Logic Level

Pin Assignments for MicroPak™

(Top Through View) FSA1156 (Normally Open)

Pin Assignment for MicroPak $^{\text{\tiny TM}}$

(Top Through View) FSA1157 (Normally Closed)

Pin Descriptions

Pin Name	Description				
A, B	Data Ports				
S	Control Input				
NC	No Connect				

1.65V to 5.5V

350°C/W

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions (Note 3)

Supply Voltage (V_{CC})

Supply Voltage (V_{CC}) -0.5V to +6.0V Switch Voltage (Note 2) -0.5V to V_{CC} +0.5V Input Voltage (V_{IN}) (Note 2) -0.5V to +6.0V Input Diode Current -50 mA Switch Current 200 mA

Control Input Voltage (Note 3) 0V to V_{CC} Switch Input Voltage 0V to V_{CC} Operating Temperature -40°C to 85°C

Peak Switch Current

Thermal Resistance θ_{JA} in Still Air (Pulsed at 1mS duration, SC70 package

<10% Duty Cycle) 400 mA

Power Dissipation at 85°C

SC70 package 180 mW Storage Temperature Range (T_{STG}) -60°C to +150°C

Maximum Junction Temperature (T₁) +150°C

Lead Temperature (T₁)

(Soldering, 10 seconds) +260°C ESD (Human Body Model) V0008

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

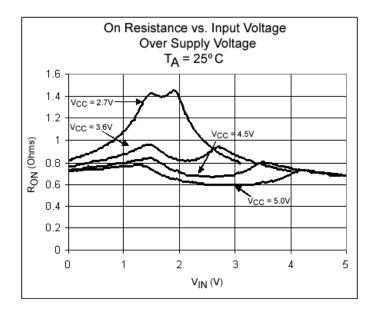
Note 3: Control input must be held HIGH or LOW and it must not float.

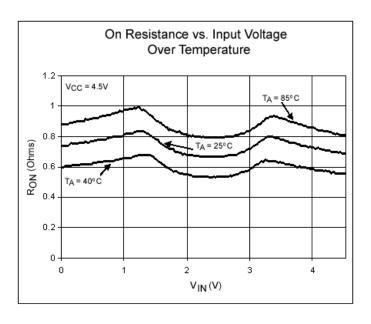
DC Electrical Characteristics (all typical values are at 25°C unless otherwise specified)

Symbol	Parameter	V _{CC} T _A = +25 °C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions			
Symbol		(V)	Min	Тур	Max	Min	Max	Units	Conditions	
V _{IH}	Input Voltage HIGH	2.7 to 3.6				2.0		V		
		4.5 to 5.5				2.4		v		
V _{IL}	Input Voltage LOW	2.7 to 3.6					0.6 V			
		4.5 to 5.5					0.8	V		
I _{IN}	Control Input Leakage	2.7 to 3.6				-1.0	1.0	۸	$V_{IN} = 0V \text{ to } V_{CC}$	
		4.5 to 5.5				-1.0	1.0	μА	NIV = 0.0 TO ACC	
I _{NO(OFF)} ,	OFF Leakage	5.5	-2.0		2.0	-20.0	20.0	nA	A = 1V, 4.5V	
I _{NC(OFF)}	Current	5.5	-2.0		2.0	-20.0	20.0	IIA	B = 4.5V, 1V	
I _{A(ON)}	ON Leakage	5.5	-4.0		4.0	-40.0	40.0	nA	A = 1V, 4.5V	
	Current	5.5	4.0		4.0	-40.0	40.0	ш	B = 1V, 4.5V or Floating	
R _{ON}	Switch On Resistance	2.7		1.4	2.1		2.5	Ω	I _{OUT} = 100mA, B = 1.5V	
	(Note 4)	4.5		0.75	0.9		1.0		I _{OUT} = 100mA, B = 3.5V	
R _{FLAT(ON)}	On Resistance Flatness	2.7		0.6				Ω	$I_{OUT} = 100 \text{mA}, B_0 = 0 \text{V}, 0.75 \text{V}, 1.5 \text{V}$	
	(Note 5)	4.5		0.1	0.2		0.3	52	$I_{OUT} = 100 \text{mA}, B_0 = 0 \text{V}, 1 \text{V}, 2 \text{V}$	
Icc	Quiescent Supply	3.6		0.1	0.5		1.0	пΔ	$V_{IN} = 0V$ or V_{CC} , $I_{OUT} = 0V$	
	Current	5.5		0.1	0.5		1.0	μ, τ	7 IN 3. 3. 3. 7CC, 1001 = 0.0	

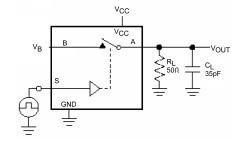
Note 4: On Resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.

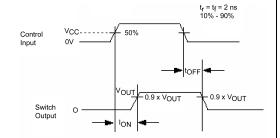
Note 5: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.


AC Electrical Characteristics (all typical value are at 25°C unless otherwise specified)

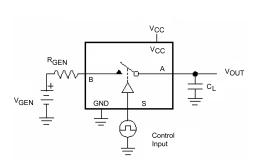

Symbol	Parameter	v _{cc}	CC T _A = +25 °C			$T_A = -40^{\circ}$	C to +85°C	Units	Conditions	Figure
Cymbol		(V)	Min	Тур	Max	Min	Max	Oiiita		Number
t _{ON}	Turn ON Time	2.7 to 3.6		30.0	40.0		45.0	ns	B = 1.5V, R _L = 50Ω, C _L = 35 pF B = 3.0V, R _L = 50Ω, C _L = 35 pF	Figure 1
		4.5 to 5.5		15.0	20.0		25.0	115	$B = 3.0V, R_L = 50\Omega, C_L = 35 pF$	Figure 1
t _{OFF}	Turn OFF Time	2.7 to 3.6		25.0	35.0		45.0	ns	B = 1.5V, R _L = 50Ω, C _L = 35 pF B = 3.0V, R _L = 50Ω, C _L = 35 pF	Figure 1
		4.5 to 5.5		22.0	30.0		40.0	115	$B = 3.0V, R_L = 50\Omega, C_L = 35 pF$	i iguie i
Q	Charge Injection	2.7 to 3.6		10.0				рС	$C_L = 1.0 nF, V_{GE} = 0 V,$	Figure 2
		4.5 to 5.5		20.0				рС	$R_{GEN} = 0\Omega$	i igalo z
OIRR	OFF- Isolation	2.7 to 3.6		-65.0				dB	$f = 1MHz, R_1 = 50\Omega$	Figure 3
		4.5 to 5.5		-65.0				ub	-	rigule 3
BW	-3db Bandwidth	2.7 to 3.6		300				MHz	$R_1 = 50\Omega$	Figure 4
		4.5 to 5.5		300				IVII IZ	IX_ = 3022	r igule 4
THD	Total Harmonic	2.7 to 3.6		0.001				%	$R_L = 600\Omega$, $V_{IN} = 0.5V$ PP,	Eiguro 5
	Distortion	4.5 to 5.5		0.001				f = 20Hz to 20kHz	Figure 5	

Capacitance


Symbol	Parameter	V _{CC} T _A = +25°			Units		Conditions	Figure
Cymbol	i arameter	(V)	Min	Тур	Max	Oilles		Number
C _{IN}	Control Pin Input Capacitance	0		3.0		pF	f = 1MHz	Figure 6
C _{OFF}	A/B Port OFF Capacitance	4.5		20.0		pF	f = 1MHz	Figure 6
C _{ON}	A/B Port ON Capacitance	4.5		65.0		pF	f = 1MHz	Figure 6


Typical Operating Characteristics

AC Loading and Waveforms



C_L Includes Fixture and Stray Capacitance

Logic Input Waveforms Inverted for Switches that have the Opposite Logic Sense

FIGURE 1. Turn ON/OFF Timing

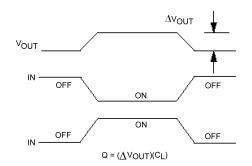


FIGURE 2. Charge Injection

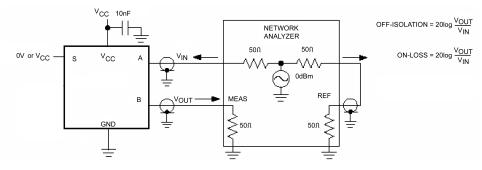


FIGURE 3. OFF Isolation

AC Loading and Waveforms (Continued)

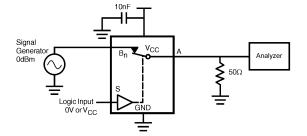


FIGURE 4. Bandwidth

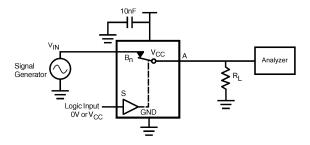


FIGURE 5. Harmonic Distortion

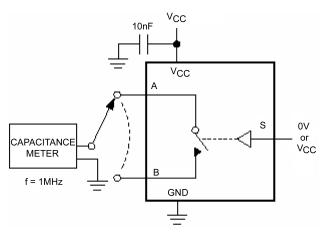
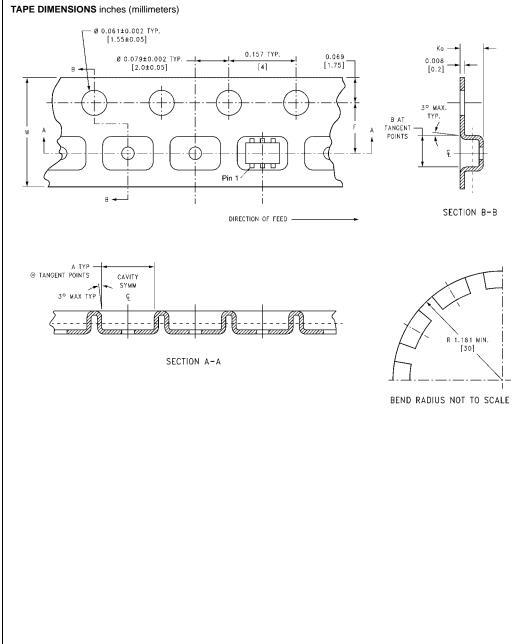
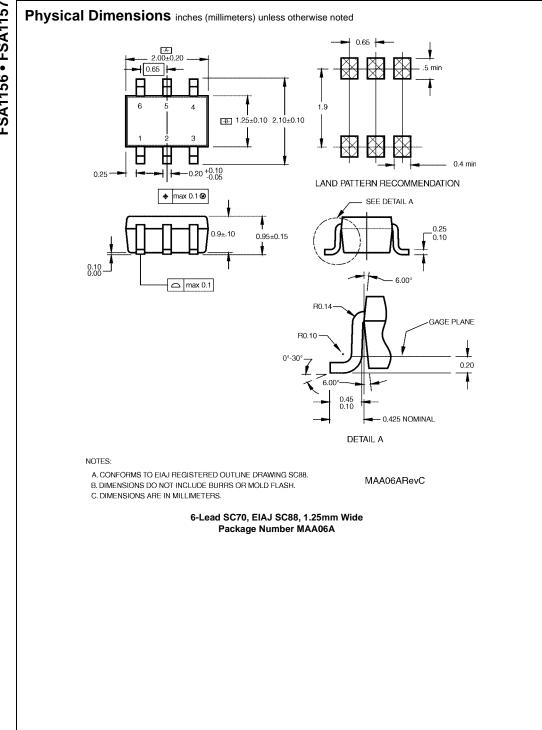
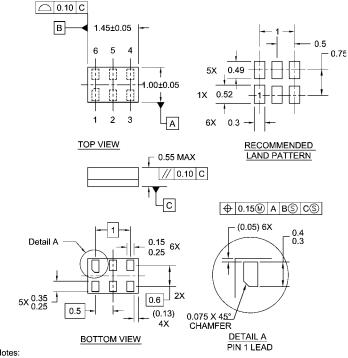




FIGURE 6. ON/OFF Capacitance


Tape and Reel Specification TAPE FORMAT for SC70 Package Tape Number Cavity Cover Tape Designator Section Cavities Status Status Sealed Leader (Start End) 125 (typ) Empty P6X 3000 Filled Sealed Carrier Sealed Trailer (Hub End) 75 (typ) Empty TAPE DIMENSIONS inches (millimeters)

Tape and Reel Specification (Continued) TAPE FORMAT for MircoPak Package Tape Number Cavity Cover Tape Designator Section Cavities Status Status Leader (Start End) 125 (typ) Empty Sealed L6X Carrier 5000 Filled Sealed Trailer (Hub End) 75 (typ) Empty Sealed TAPE DIMENSIONS inches (millimeters) 5° MAX 8.00 ^{+0.30} -0.10 3.50±0.05 1.15±0.05 В ∟ø 0.50 ±0.05 SECTION B-B SCALE:10X DIRECTION OF FEED-0.254±0.020 ┌ 0.70±0.05 -1.60±0.05 SECTION A-A **REEL DIMENSIONS** inches (millimeters) TAPE SLOT DETAIL X **DETAIL X** SCALE: 3X Tape Α В С D Ν W1 W2 W3 Size 0.795 2.165 0.331 + 0.059/-0.000 0.567 W1 + 0.078/-0.039 7.0 0.059 0.512 8 mm (177.8)(20.20)(55.00)(8.40 + 1.50 / -0.00)(W1 + 2.00/-1.00)(1.50)(13.00)(14.40)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Notes:

- 1. JEDEC PACKAGE REGISTRATION IS ANTICIPATED 2. DIMENSIONS ARE IN MILLIMETERS 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06ARevB

6-Lead MicroPak, 1.0mm Wide Package Number MAC06A

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com