

FAIRCHILD

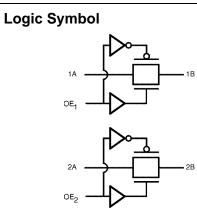
SEMICONDUCTORIM

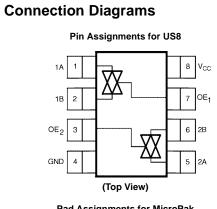
May 2000 Revised November 2003

FSA266 • NC7WB66 TinyLogic® Low Voltage UHS Dual SPST Normally Open Analog Switch or 2-Bit Bus Switch

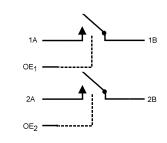
General Description

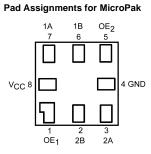
The FSA266 or NC7WB66 is an ultra high-speed (UHS) dual single-pole/single-throw (SPST) analog switch or 2-bit bus switch. The device is fabricated with advanced submicron CMOS technology to achieve high speed enable and disable times and low On Resistance over a broad V_{CC} range. The device is specified to operate over the 1.65 to 5.5V V_{CC} operating range. The device is organized as a dual switch with independent CMOS compatible switch enable (OE) controls. When OE is HIGH, the switch is OPEN and a high-impedance state exists between the two ports. The enable inputs tolerate voltages up to 5.5V independent of the V_{CC} operating range.


Features


- Useful in both analog and digital applications
- Space saving US8 surface mount package
- MicroPak[™] leadless package
- Typical 7Ω On Resistance @ 5V V_{CC}
- Broad V_{CC} operating range: 1.65V to 5.5V
- Rail-to-Rail signal handling
- Power down high impedance control inputs
- Control inputs are overvoltage tolerant
- Control inputs are CMOS compatible
- >300 MHz –3dB bandwidth

Ordering Code:


		Product		
Order	Package	Code	Package Description	Supplied As
Number	Number	Top Mark		E E2 . 025
FSA266K8X	MAB08A	WB66	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3K Units on Tape and Reel
FSA266L8X	MAC08A	P4	8-Lead MicroPak, 1.6 mm Wide	5K Units on Tape and Reel
NC7WB66K8X	MAB08A	WB66	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3K Units on Tape and Reel
NC7WB66L8X	MAC08A	P4	8-Lead MicroPak, 1.6 mm Wide	5K Units on Tape and Reel
-	- 8	37	ZSC.COM	


TinyLogic[®] is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation. FSA266 • NC7WB66 TinyLogic® Low Voltage UHS Dual SPST Normally Open Analog Switch or 2-Bit Bus Switch

Analog Symbol

Pin Descriptions

Pin Names	Description
A	Switch Port A
В	Switch Port B
OE	Control Input

Function Table

Switch Enable Input (OE)	Function
L	Disconnect
Н	B Connected to A
= HIGH Logic Level	

H = HIGH Logic Level L = LOW Logic Level

(Top Thru View)

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S)	–0.5V to V_{CC} + 0.5V
DC Input Voltage (VIN) (Note 2)	-0.5V to +7.0V
DC Input Diode Current	
@ (I _{IK}) V _{IN} < 0V	–50 mA
DC Switch Output Current (I _{OUT})	±128 mA
DC V _{CC} or Ground Current (I_{CC}/I_{GND})	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Lead Temperature	
under Bias (T _J)	+150°C
Junction Lead Temperature (T _L)	
(Soldering, 10 Seconds)	+260°C
Power Dissipation (P _D) @ +85°C	
SC70-6	250 mW

Recommended Operating Conditions (Note 3)

Supply Voltage (V _{CC})	1.65V to 5.5V
Control Input Voltage (VIN)	0V to 5.5V
Switch Input Voltage (VIN)	0V to V _{CC}
Switch Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
Control Input V _{CC} = 1.65V–2.7V	0 ns/V to 20 ns/V
Control Input $V_{CC} = 3.0V - 3.6V$	0 ns/V to 10 ns/V
Control Input $V_{CC} = 4.5V-5.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	250°C/W

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

Symbol	Parameter	V _{cc}	T _A = +25°C			$T_A{=}{-}40^\circ\text{C}$ to ${+}85^\circ\text{C}$		Units	Conditions
		(V)	Min	Тур	Max	Min	Max	Units	Conditions
V _{IH}	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V	
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v	
V _{IL}	LOW Level Input Voltage	1.65 to 1.95			0.25 V _{CC}		0.25V _{CC}	V	
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v	
IN	Input Leakage Current	0 to 5.5			±0.1		±1.0	μA	$0 \le V_{IN} \le 5.5V$
OFF	Switch OFF Leakage Current	1.65 to 5.5			±0.1		±1.0	μA	$0 \le A, B \le V_{CC}$
R _{ON}	Switch On Resistance			6	10		10		$V_{I} = 0V, I_{O} = 30 \text{ mA}$
	(Note 4)	4.5		7	13.5		13.5	Ω	$V_{I} = 2.4V, I_{O} = -30 \text{ m/}$
				6	10		10		$V_{I} = 4.5V, I_{O} = -30 \text{ m/}$
		3.0		7.5	15		15	Ω	$V_{I} = 0V, I_{O} = 24 \text{ mA}$
		3.0		8.5	15		15	. 12	$V_{I} = 3V, I_{O} = -24 \text{ mA}$
		2.3		9	20		20	Ω	$V_{I} = 0V, I_{O} = 8 \text{ mA}$
		2.5		10.5	20		20	52	$V_{I} = 2.3V, I_{O} = -8 \text{ mA}$
		1.65		12.5	30		30	Ω	$V_{I} = 0V, I_{O} = 4 \text{ mA}$
				17	30		30		$V_I = 1.65V, I_O = -4 mA$
сс	Quiescent Supply Current	5.5			1		10	μA	$V_{IN} = V_{CC}$ or GND
	All Channels ON or OFF	5.5			I		10	μΛ	$I_{OUT} = 0$
	Analog Signal Range	V _{CC}	0		V _{CC}	0	V _{CC}	V	
RRange	On Resistance Over	4.5		8	15		15		$I_{O}=-30~mA,~0\leq V_{I}\leq$
	Signal Range	3.0		15	30		30	Ω	$I_{O}=-24~mA,0\leq V_{I}\leq$
	(Note 4)(Note 5)	2.3		45	75		75		$I_O = -8 \text{ mA}, \ 0 \leq V_I \leq V$
		1.65		150	275		275		$I_O = -4 \text{ mA}, \ 0 \le V_I \le V_I$
∆R _{ON}	On Resistance Match	4.5		0.2					$I_0 = -30 \text{ mA}, V_1 = 3.13$
	Between Channels	3.0		0.2				Ω	$I_0 = -24 \text{ mA}, V_1 = 2.1$
	(Note 4)(Note 7)	2.3		0.5					$I_{O} = -8 \text{ mA}, V_{I} = 1.6$
		1.65		0.6					$I_0 = -4 \text{ mA}, V_1 = 1.15$

DC Electrical Characteristics

DC Electrical Characteristics (Continued)

Symbol	vmbol Parameter		T _A = +25°C			T _A =-40°C	C to +85°C	Units	Conditions	
Oymbol	rarameter	(V)	Min	Тур	Max	Min	Max	onita	Conditions	
R _{flat}	On Resistance Flatness	4.5		2.5	6		6		$I_O = -30 \text{ mA}, \ 0 \leq V_I \leq V_{CC}$	
	(Note 4)(Note 5)(Note 6)	3.0		8	17.5		17.5		$I_O = -24 \text{ mA}, \ 0 \leq V_I \leq V_{CC}$	
		2.3		33	60		60		$I_{O}=-8~mA,~0\leq V_{I}\leq V_{CC}$	
		1.65		135	250		250		$I_O = -4 \text{ mA}, 0 \le V_I \le V_{CC}$	

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

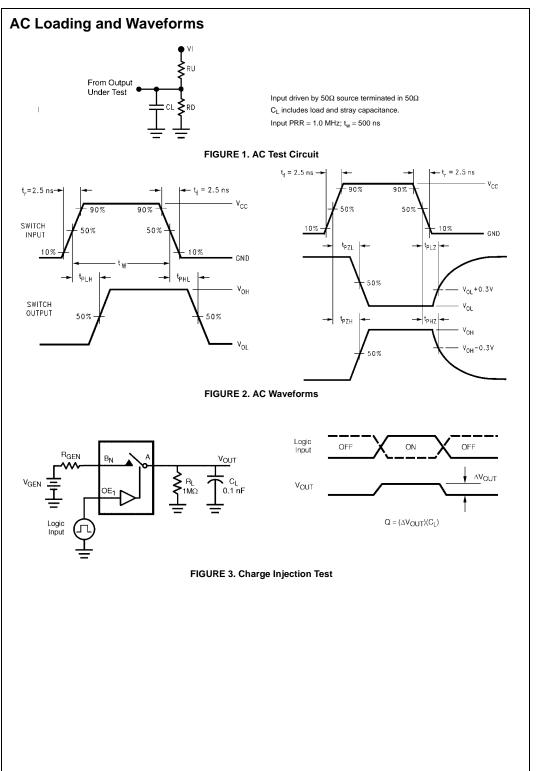
Note 5: Guaranteed by design.

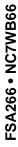
Note 6: Flatness is defined as the difference between the minimum and maximum value of ON Resistance over the specified range of conditions.

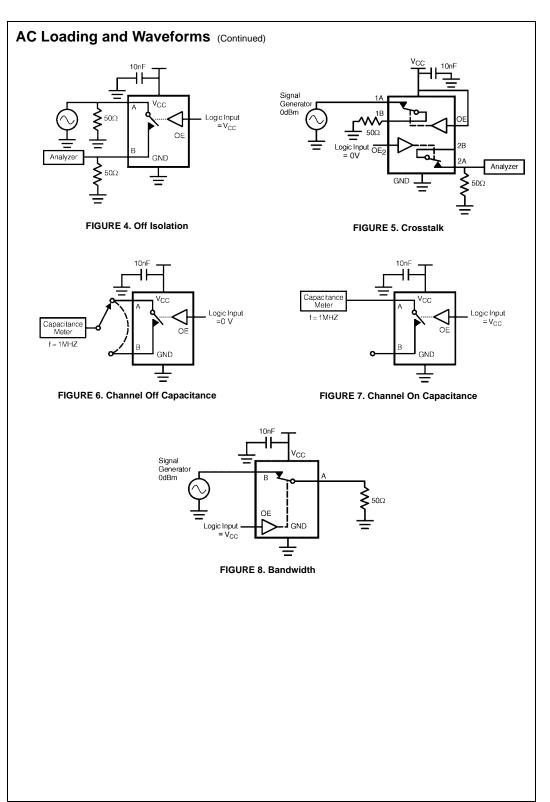
Note 7: $\Delta R_{ON} = R_{ON} \text{ max} - R_{ON} \text{ min measured at identical } V_{CC}$, temperature and voltage levels.

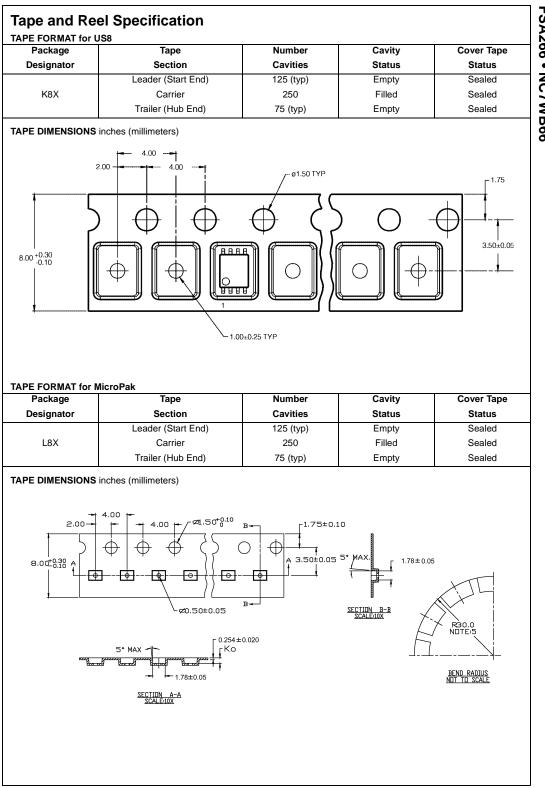
AC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A =	-40°C to +	85°C	Units	Conditions	Figure	
Symbol	Farameter	(V)	(V) Min		Max	Units	Conditions	Number	
t _{PHL} , t _{PLH}	Propagation Delay Bus-to-Bus	4.5 to 5.5		0.35	1.0				
	(Note 8)	3.0 to 3.6		0.7	1.5	ns	$V_I = OPEN$	Figures 2, 1	
		2.3 to 2.7		1.1	2.5	ns	$C_L = 50 \text{ pF}, \text{ RU} = \text{RD} = 500\Omega$		
		1.65 to 1.95		2.0	4.0				
t _{PZL} , t _{PZH}	Output Enable Time	4.5 to 5.5	0.8	2.0	3.2				
	Turn on Time	3.0 to 3.6	1.2	2.5	3.9		$V_I = 0V$ for t_{PZH}	Figures 2, 1	
		2.3 to 2.7	1.5	3.2	5.6	ns	$V_I = 2 \times V_{CC}$ for t_{PZL}		
		1.65 to 1.95	2.5	5.7	10		$C_L = 50 \text{ pF}, \text{RU} = \text{RD} = 500\Omega$		
t _{PLZ} , t _{PHZ}	Output Disable Time	4.5 to 5.5	0.8	2.6	4.1	ns		Figures 2, 1	
	Turn Off Time	3.0 to 3.6	1.5	3.4	5.0		$V_I = 0V$ for t_{PHZ}		
		2.3 to 2.7	2.0	4.2	6.9		$V_I = 2 \times V_{CC}$ for t_{PLZ}		
		1.65 to 1.95	3.0	6.2	10.5		$C_L = 50 \text{ pF}, \text{RU} = \text{RD} = 500\Omega$		
Q	Charge Injection (Note 9)	1.65 to 5.5				рС	$C_{L} = 0.1 \text{ nF}, V_{GEN} = 0V,$	Figure 3	
							$R_{GEN} = 0 \Omega$, f = 1 MHz		
OIRR	Off Isolation (Note 10)	1.65 to 5.5		-55		dB	$R_L = 50 \Omega$, $C_L = 5 pF$,	Figure 4	
							f = 10 MHz		
Xtalk	Crosstalk	1.65 to 5.5		-70		dB	$R_L = 50 \Omega$, $C_L = 5 pF$,	Figure 5	
							f = 10 MHz		
BW	-3dB Bandwidth	1.65 to 5.5		>300		MHz	$R_L = 50 \Omega$	Figure 8	
THD	Total Harmonic Distortion						$R_L = 600\Omega$		
	(Note 9)	5		.016		%	0.5 V _{P-P}		
							f = 600 Hz to 20 KHz		

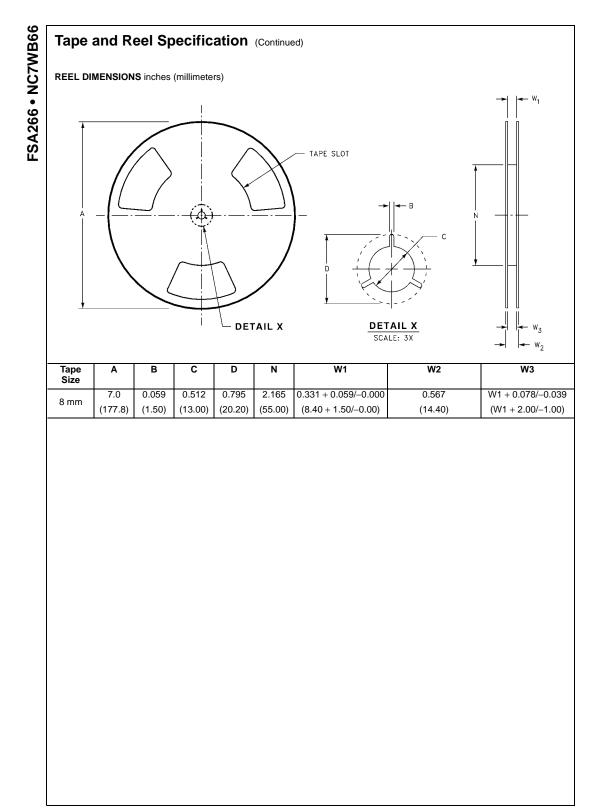

Note 8: This parameter is guaranteed by design. The switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance.

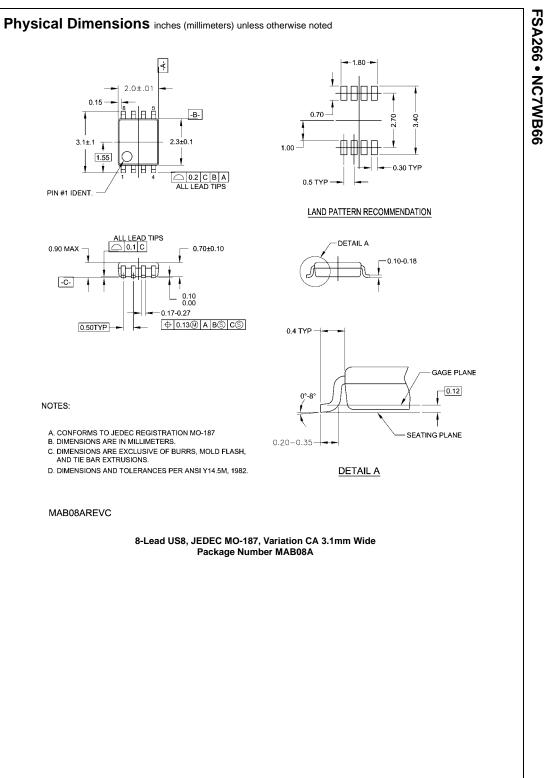

Note 9: Guaranteed by design.

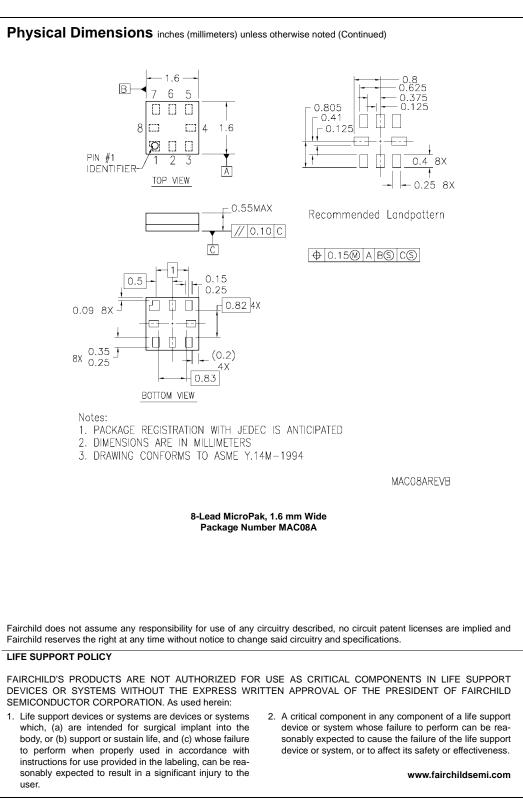

Note 10: Off Isolation = $20 \log_{10} [V_A/V_{Bn}]$


Capacitance

Symbol	Parameter	Тур	Max	Units	Conditions	Figures
CIN	Control Pin Input Capacitance	2.5		pF	$V_{CC} = 0V$	
C _{I/O} (OFF)	Switch Port Off Capacitance	5		pF	$V_{CC} = 5.0V$	Figure 6
C _{I/O} (ON)	Switch Port Capacitance when Switch is Enabled	10		pF	V _{CC} = 5.0V	Figure 7







FSA266 • NC7WB66

