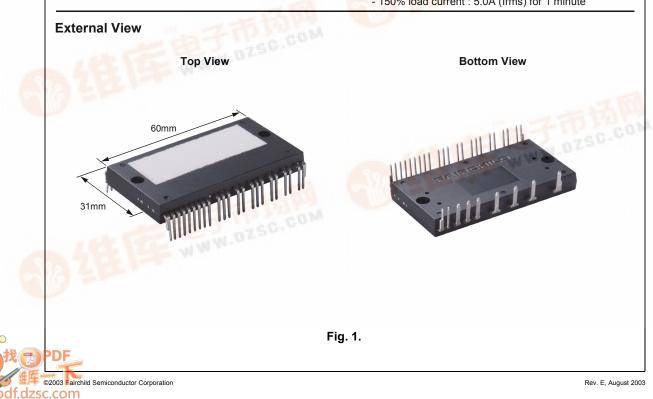


SEMICONDUCTOR

FSAM10SM60A SPM[™] (Smart Power Module) **General Description**


FSAM10SM60A is an advanced smart power module (SPM) that Fairchild has newly developed and designed to provide very compact and high performance ac motor drives mainly targeting medium speed low-power inverterdriven application like air conditioners. It combines optimized circuit protection and drive matched to low-loss IGBTs. Highly effective short-circuit current detection/ protection is realized through the use of advanced current sensing IGBT chips that allow continuous monitoring of the IGBTs current. System reliability is further enhanced by the built-in over-temperature monitoring and integrated undervoltage lock-out protection. The high speed built-in HVIC provides opto-coupler-less IGBT gate driving capability that further reduce the overall size of the inverter system design. In addition the incorporated HVIC facilitates the use of single-supply drive topology enabling the FSAM10SM60A to be driven by only one drive supply voltage without negative bias. Inverter current sensing application can be achieved due to the divided nagative dc terminals.

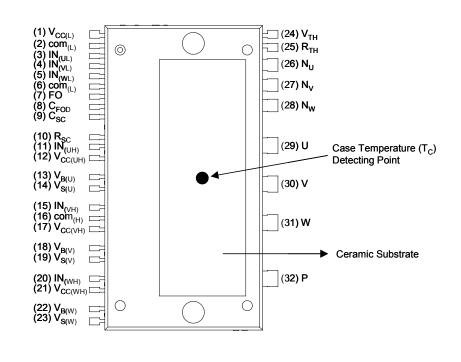
Features

- UL Certified No. E209204
- 600V-10A 3-phase IGBT inverter bridge including control ICs for gate driving and protection
- Divided negative dc-link terminals for inverter current sensing applications
- Single-grounded power supply due to built-in HVIC
- Typical switching frequency of 5kHz
- Built-in thermistor for over-temperature monitoring
- Inverter power rating of 0.5kW / 100~253 Vac
- Isolation rating of 2500Vrms/min.
- Very low leakage current due to using ceramic substrate
- Adjustable current protection level by varying series resistor value with sense-IGBTs

Applications

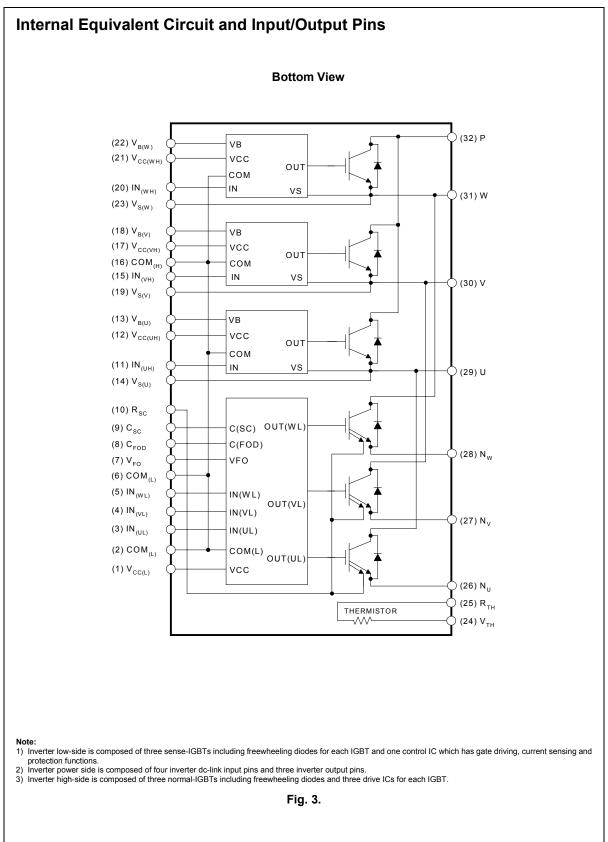
- AC 100V ~ 253V 3-phase inverter drive for small power (0.5kW) ac motor drives
- Home appliances applications requiring medium switching frequency operation like air conditioners drive system
- Application ratings:
- Power : 0.5 kW / 100~253 Vac
- Switching frequency : Typical 5kHz (PWM Control)
- 100% load current : 3.3A (Irms)
- 150% load current : 5.0A (Irms) for 1 minute

Integrated Power Functions


• 600V-10A IGBT inverter for 3-phase DC/AC power conversion (Please refer to Fig. 3)

Integrated Drive, Protection and System Control Functions

- For inverter high-side IGBTs: Gate drive circuit, High voltage isolated high-speed level shifting
 Control circuit under-voltage (UV) protection
 - Note) Available bootstrap circuit example is given in Figs. 14 and 15.
- For inverter low-side IGBTs: Gate drive circuit, Short-Circuit (SC) protection Control supply circuit under-voltage (UV) protection
- Temperature Monitoring: System over-temperature monitoring using built-in thermistor
 - Note) Available temperature monitoring circuit is given in Fig. 15.
- · Fault signaling: Corresponding to a SC fault (Low-side IGBTs) or a UV fault (Low-side control supply circuit)
- Input interface: 5V CMOS/LSTTL compatible, Schmitt trigger input


Pin Configuration

Top View

in Descr	Pin Name	Pin Description
1	V _{CC(L)}	Low-side Common Bias Voltage for IC and IGBTs Driving
2	COM _(L)	Low-side Common Supply Ground
3	IN _(UL)	Signal Input for Low-side U Phase
4	IN _(VL)	Signal Input for Low-side V Phase
5	IN _(WL)	Signal Input for Low-side W Phase
6	COM _(L)	Low-side Common Supply Ground
7	V _{FO}	Fault Output
8	C _{FOD}	Capacitor for Fault Output Duration Time Selection
9	C _{SC}	Capacitor (Low-pass Filter) for Short-Circuit Current Detection Input
10	R _{SC}	Resistor for Short-Circuit Current Detection
11	IN _(UH)	Signal Input for High-side U Phase
12	V _{CC(UH)}	High-side Bias Voltage for U Phase IC
13	V _{B(U)}	High-side Bias Voltage for U Phase IGBT Driving
14	V _{S(U)}	High-side Bias Voltage Ground for U Phase IGBT Driving
15	IN _(VH)	Signal Input for High-side V Phase
16	COM(H)	High-side Common Supply Ground
17	V _{CC(VH)}	High-side Bias Voltage for V Phase IC
18	V _{B(V)}	High-side Bias Voltage for V Phase IGBT Driving
19	V _{S(V)}	High-side Bias Voltage Ground for V Phase IGBT Driving
20	IN _(WH)	Signal Input for High-side W Phase
21	V _{CC(WH)} High-side Bias Voltage for W Phase IC	
22	V _{B(W)}	High-side Bias Voltage for W Phase IGBT Driving
23	V _{S(W)}	High-side Bias Voltage Ground for W Phase IGBT Driving
24	V _{TH} Thermistor Bias Voltage	
25	R _{TH}	Series Resistor for the Use of Thermistor (Temperature Detection)
26	NU	Negative DC-Link Input for U Phase
27	N _V	Negative DC-Link Input for V Phase
28	N _W	Negative DC–Link Input for W Phase
29	U	Output for U Phase
30	V	Output for V Phase
31	W	Output for W Phase
32	Р	Positive DC–Link Input

Absolute Maximum Ratings (T_J = 25°C, Unless Otherwise Specified) **Inverter Part**

ltem	Symbol	Condition	Rating	Unit
Supply Voltage	V _{PN}	Applied between P- N _U , N _V , N _W	450	V
Supply Voltage (Surge)	V _{PN(Surge)}	Applied between P- N _U , N _V , N _W	500	V
Collector-Emitter Voltage	V _{CES}		600	V
Each IGBT Collector Current	± I _C	$T_{\rm C} = 25^{\circ}{\rm C}$	10	А
Each IGBT Collector Current	± I _C	$T_{\rm C}$ = 100°C	9	А
Each IGBT Collector Current (Peak)	± I _{CP}	T _C = 25°C, Instantaneous Value (Pulse)	20	A
Collector Dissipation	P _C	T _C = 25°C per One Chip	43	W
Operating Junction Temperature	TJ	(Note 1)	-20 ~ 125	°C

Note: 1. It would be recommended that the average junction temperature should be limited to $T_J \le 125^{\circ}C$ (@ $T_C \le 100^{\circ}C$) in order to guarantee safe operation.

Control Part

ltem	Symbol	Condition	Rating	Unit
Control Supply Voltage	V _{CC}	Applied between $V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$ - $COM_{(H)}$, $V_{CC(L)}$ - $COM_{(L)}$	20	V
High-side Control Bias Voltage	V _{BS}	Applied between $V_{B(U)}$ - $V_{S(U)}$, $V_{B(V)}$ - $V_{S(V)}$, $V_{B(W)}$ - $V_{S(W)}$	20	V
Input Signal Voltage	V _{IN}	Applied between $IN_{(UH)}$, $IN_{(VH)}$, $IN_{(WH)}$ - $COM_{(H)}$ $IN_{(UL)}$, $IN_{(VL)}$, $IN_{(WL)}$ - $COM_{(L)}$	-0.3 ~ V _{CC} +0.3	V
Fault Output Supply Voltage	V _{FO}	Applied between V _{FO} - COM _(L)	$-0.3 \sim V_{CC} + 0.3$	V
Fault Output Current	I _{FO}	Sink Current at V _{FO} Pin	5	mA
Current Sensing Input Voltage	V _{SC}	Applied between C _{SC} - COM _(L)	-0.3 ~ V _{CC} +0.3	V

Total System

Item	Symbol	Condition	Rating	Unit
Self Protection Supply Voltage Limit (Short-Circuit Protection Capability)	V _{PN(PROT)}	$V_{CC} = V_{BS} = 13.5 \sim 16.5V$ T _J = 25°C, Non-repetitive, less than 6µs	400	V
Module Case Operation Temperature	Т _С	Note Fig.2	-20 ~ 100	°C
Storage Temperature	T _{STG}		-20 ~ 125	°C
Isolation Voltage	V _{ISO}	60Hz, Sinusoidal, AC 1 minute, Connection Pins to Heat-sink Plate	2500	V _{rms}

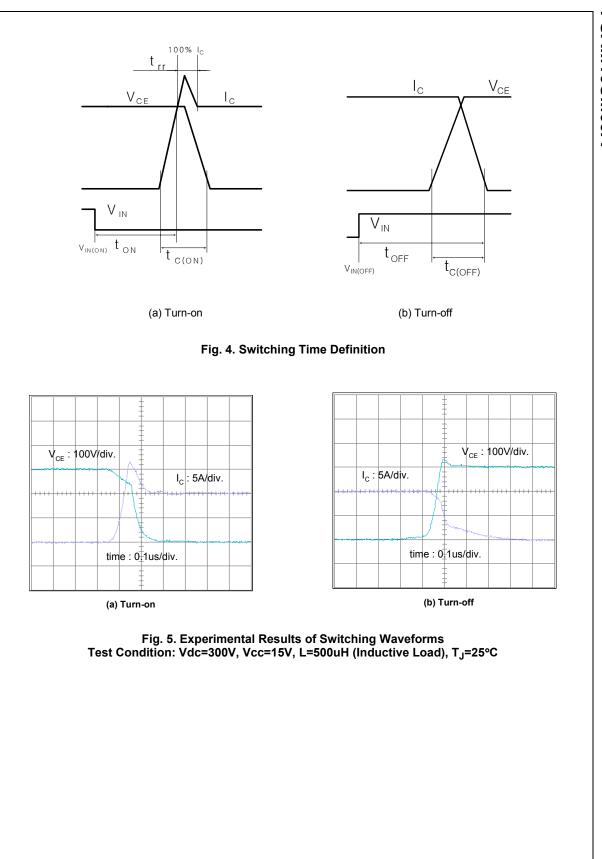
Absolute Maximum Ratings

Thermal Resistance

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Junction to Case Thermal Resistance	R _{th(j-c)Q}	Each IGBT under Inverter Operating Condition	-	-	2.9	°C/W
	R _{th(j-c)F}	Each FWDi under Inverter Operating Condition	-	-	3.6	°C/W
Contact Thermal Resistance	R _{th(c-h)}	Ceramic Substrate (per 1 Module) Thermal Grease Applied (Note 3)	-	-	0.06	°C/W

FSAM10SM60A

Note: 2. For the measurement point of case temperature(T_C), please refer to Fig. 2. 3. The thickness of thermal grease should not be more than 100um.

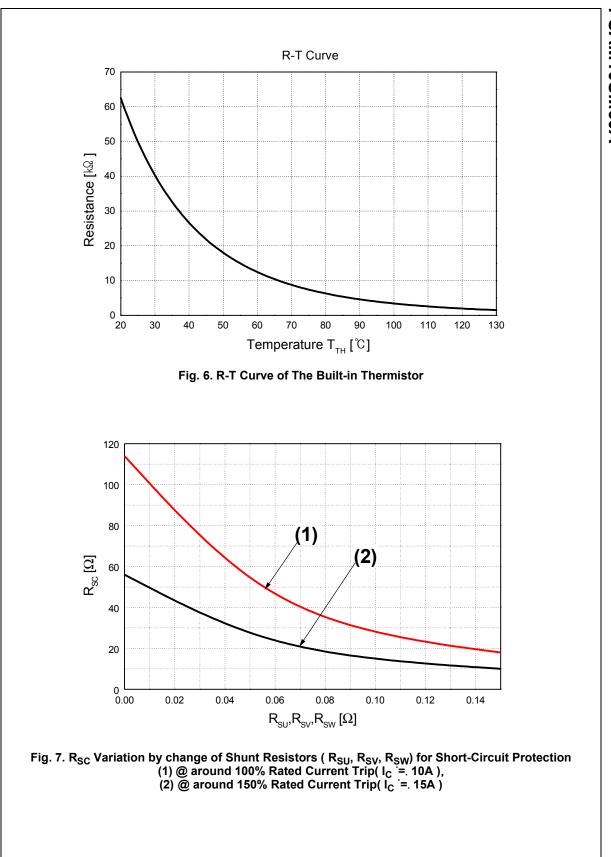

Electrical Characteristics (T_J = 25°C, Unless Otherwise Specified)

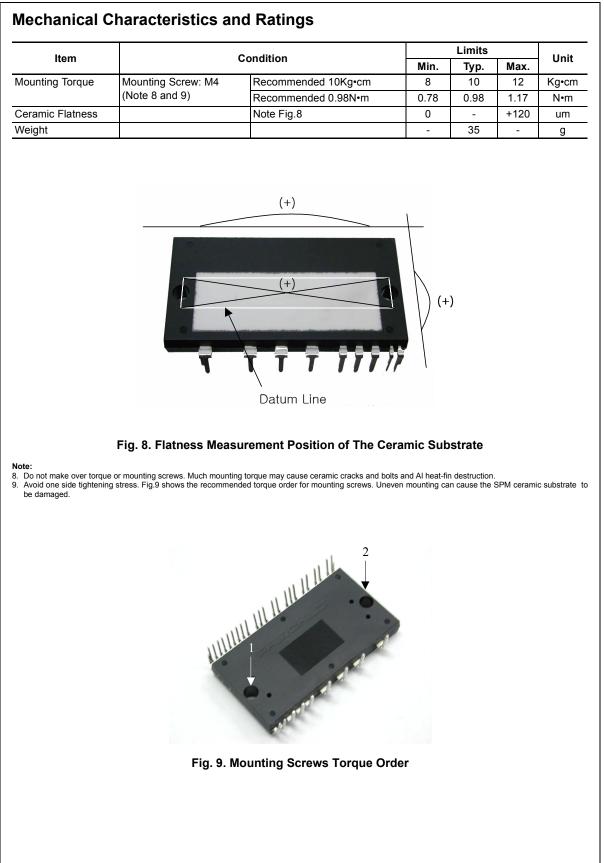
Inverter Part

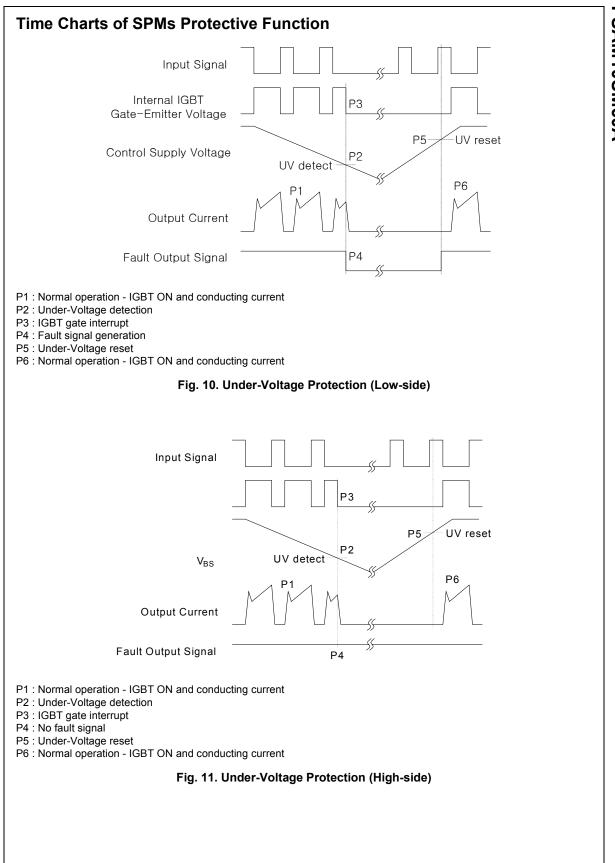
Item	Symbol	Conditio	on	Min.	Тур.	Max.	Unit
Collector - Emitter Saturation Voltage	V _{CE(SAT)}	$V_{CC} = V_{BS} = 15V$ $V_{IN} = 0V$	I _C = 10A, T _J = 25°C	-	-	2.3	V
FWDi Forward Voltage	V _{FM}	V _{IN} = 5V	I _C = 10A, T _J = 25°C	-	-	2.3	V
Switching Times	t _{ON}	V _{PN} = 300V, V _{CC} = V _{BS} = 15	5V	-	0.29	-	us
	t _{C(ON)}	$I_{\rm C} = 10$ A, $T_{\rm J} = 25^{\circ}$ C		-	0.13	-	us
	t _{OFF}	$V_{IN} = 5V \leftrightarrow 0V$, Inductive Lo (High, Low-side)	ad	-	0.79	-	us
	t _{C(OFF)}	(Fight, Low-side)		-	0.37	-	us
	t _{rr}	(Note 4)		-	0.13	-	us
Collector - Emitter Leakage Current	I _{CES}	$V_{CE} = V_{CES}, T_J = 25^{\circ}C$		-	-	250	μA

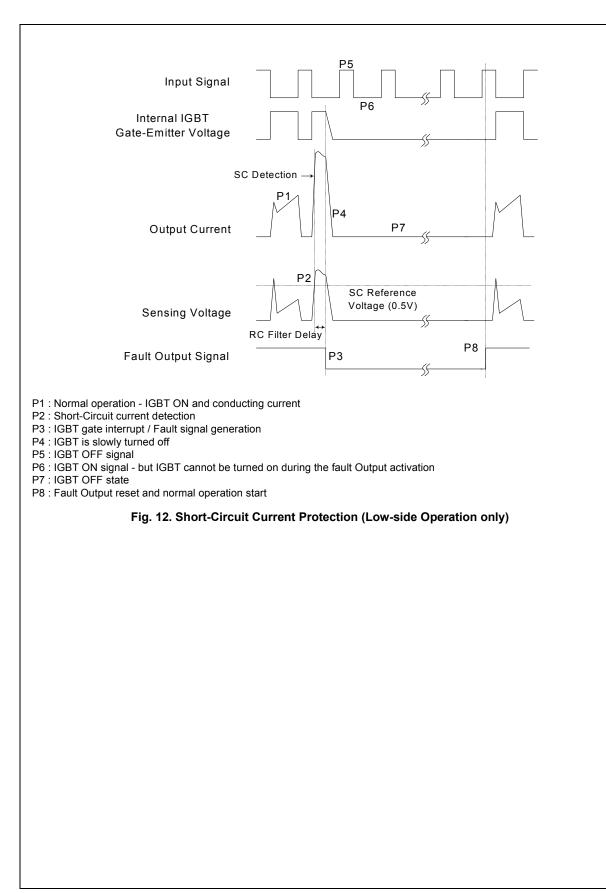
Note:

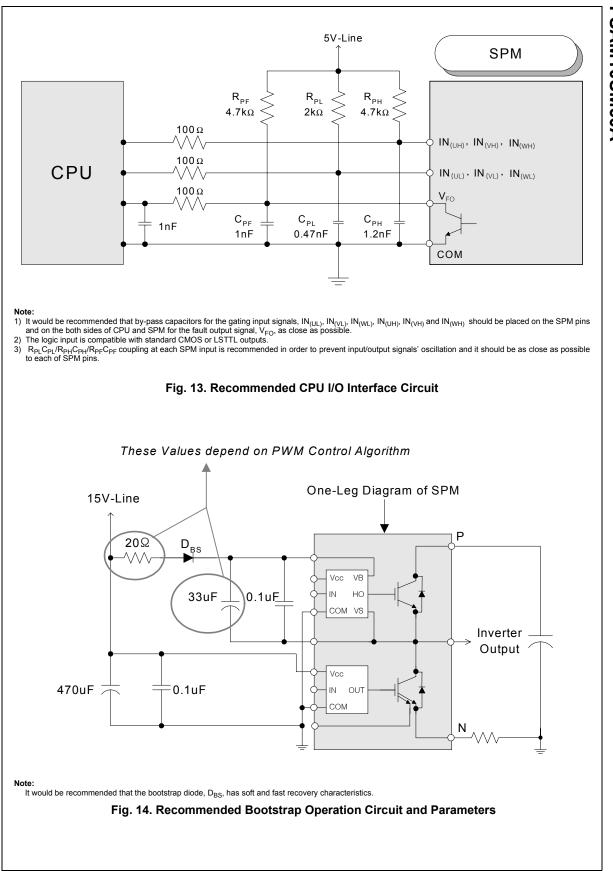
t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Fig. 4.

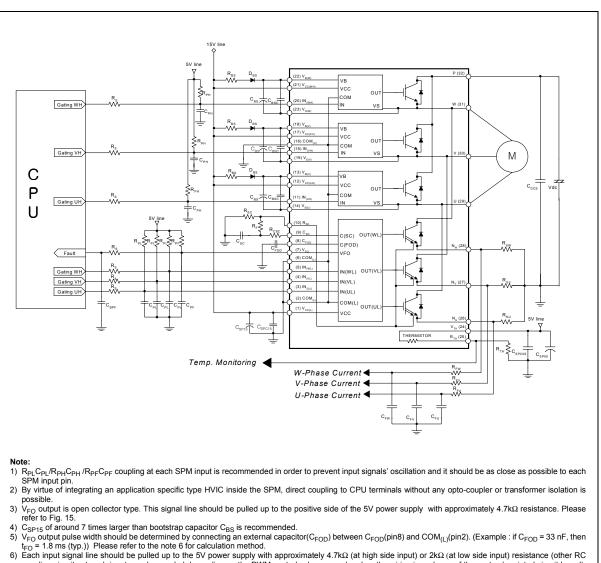



Item	Symbol		Condition	Min.	Тур.	Max.	Unit
Quiescent V_{CC} Supply Current	I _{QCCL}	V _{CC} = 15V IN _(UL, VL, WL) = 5V	V _{CC(L)} - COM _(L)	-	-	26	mA
	I _{QCCH}	V _{CC} = 15V IN _(UH, VH, WH) = 5V	$V_{CC(UH)}, V_{CC(VH)}, V_{CC(WH)} - COM_{(H)}$	-	-	130	uA
Quiescent V_{BS} Supply Current	I _{QBS}	V _{BS} = 15V IN _(UH, VH, WH) = 5V	$V_{B(U)} - V_{S(U)}, V_{B(V)} - V_{S(V)}, V_{B(W)} - V_{S(W)}$	-	-	420	uA
Fault Output Voltage	V _{FOH}	V_{SC} = 0V, V_{FO} Circuit: 4.7k Ω to 5V Pull-up		4.5	-	-	V
	V _{FOL}	V_{SC} = 1V, V_{FO} Circuit: 4.7k Ω to 5V Pull-up		-	-	1.1	V
Short-Circuit Trip Level	V _{SC(ref)}	V _{CC} = 15V (Note 5)		0.45	0.51	0.56	V
Sensing Voltage of IGBT Current	V _{SEN}	R_{SC} = 56 Ω , R_{SU} = R_{SV} = R_{SW} = 0 Ω and I_C = 15A (Note Fig. 7)		0.45	0.51	0.56	V
Supply Circuit Under-	UV _{CCD}	Detection Level		11.5	12	12.5	V
Voltage Protection	UV _{CCR}	Reset Level		12	12.5	13	V
	UV _{BSD}	Detection Level		7.3	9.0	10.8	V
	UV _{BSR}	Reset Level		8.6	10.3	12	V
Fault Output Pulse Width	t _{FOD}	C _{FOD} = 33nF (Note 6		1.4	1.8	2.0	ms
ON Threshold Voltage	V _{IN(ON)}	High-Side	Applied between IN _(UH) , IN _(VH) ,	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}		IN _(WH) - COM _(H)	3.0	-	-	V
ON Threshold Voltage	V _{IN(ON)}	Low-Side	Applied between IN _(UL) , IN _(VL) ,	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}		IN _(WL) - COM _(L)	3.0	-	-	V
Resistance of Thermistor	R _{TH}	@ T _{TH} = 25°C (Note	Fig. 6) (Note 7)	-	50	-	kΩ
		@ T _{TH} = 100°C (Note	e Fig. 6) (Note 7)	-	3.4	-	kΩ


Note: 5. Short-circuit current protection is functioning only at the low-sides. It would be recommended that the value of the external sensing resistor (R_{SC}) should be selected around 56 Ω in order to make the SC trip-level of about 15A at the shunt resistors (R_{SL}, R_{SV}, R_{SW}) of $\Omega\Omega$. For the detailed information about the relationship between the external sensing resistor (R_{SC}) and the shunt resistors (R_{SL}, R_{SV}, R_{SW}), please see Fig. 7. 6. The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation : C_{FOD} = 18.3 x 10⁻⁶ x $t_{FOD}[F]$ 7. T_{TH} is the temperature of thermistor itself. To know case temperature (T_C), please make the experiment considering your application.

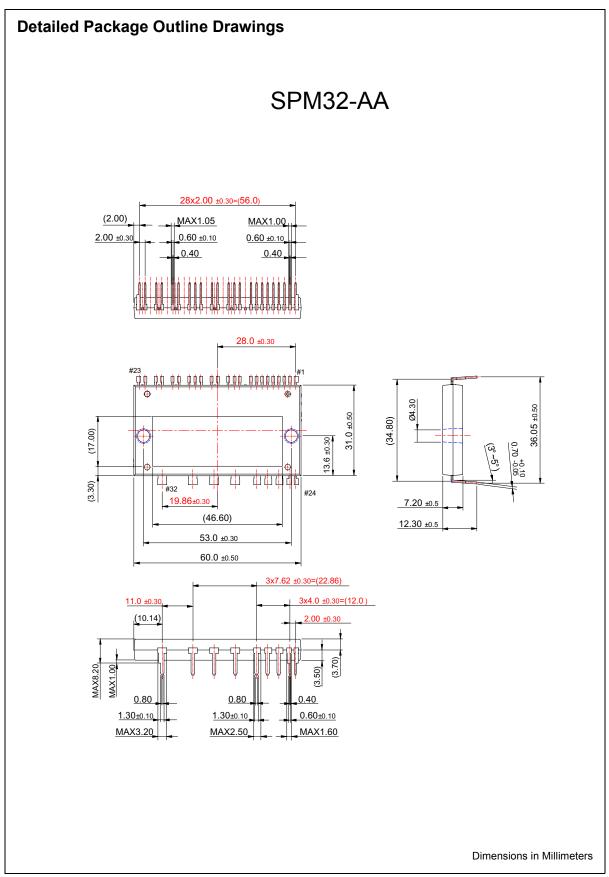

Recommended Operating Conditions


lá a una	Symbol		Values			11
ltem	Symbol	Condition		Тур.	Max.	Unit
Supply Voltage	V _{PN}	Applied between P - N _U , N _V , N _W	-	300	400	V
Control Supply Voltage	V _{CC}	Applied between $V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$ - $COM_{(H)}$, $V_{CC(L)}$ - $COM_{(L)}$	13.5	15	16.5	V
High-side Bias Voltage	V _{BS}	Applied between V _{B(U)} - V _{S(U)} , V _{B(V)} - V _{S(V)} , V _{B(W)} - V _{S(W)}	13.5	15	16.5	V
Blanking Time for Preventing Arm-short	t _{dead}	For Each Input Signal	3	-	-	us
PWM Input Signal	f _{PWM}	$T_C \le 100^{\circ}C, T_J \le 125^{\circ}C$	-	5	-	kHz
Input ON Threshold Voltage	$COM_{(H)}, IN_{(UL)}, IN_{(VL)}, IN_{(WL)} - COM_{(L)}$		0 ~ 0.65	5	V	
Input OFF Threshold Voltage	V _{IN(OFF)}	$\begin{array}{l} \mbox{Applied between IN}_{(UH)}, \mbox{ IN}_{(VH)}, \mbox{ IN}_{(WH)} - \\ \mbox{COM}_{(H)}, \mbox{ IN}_{(UL)}, \mbox{ IN}_{(VL)}, \mbox{ IN}_{(WL)} - \mbox{COM}_{(L)} \end{array}$		4 ~ 5.5		V



6) Each input signal line should be pulled up to the 5V power supply with approximately 4.7kΩ (at high side input) or 2kΩ (at low side input) resistance (other RC coupling circuits at each input may be needed depending on the PWM control scheme used and on the wiring impedance of the system's printed circuit board). Approximately a 0.22~2nF by-pass capacitor should be used across each power supply connection terminals.

7) To prevent errors of the protection function, the wiring around R_{SC} , R_F and C_{SC} should be as short as possible.


8) In the short-circuit protection circuit, please select the R_FC_{SC} time constant in the range 3~4 μs.
9) To enhance the noise immunity, C_{SC} pin should be connected to the external circuit through a series resistor, R_{CSC}, which is approximately 390Ω. R_{SCS} should be connected to C_{SC} pin as close as possible.

10)Each capacitor should be mounted as close to the pins of the SPM as possible.

11)To prevent surge destruction, the wiring between the smoothing capacitor and the P&N pins should be as short as possible. The use of a high frequency noninductive capacitor of around 0.1~0.22 uF between the P&N pins is recommended.

12)Relays are used at almost every systems of electrical equipments of home appliances. In these cases, there should be sufficient distance between the CPU and the relays. It is recommended that the distance be 5cm at least.

Fig. 15. Typical Application Circuit

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	LittleFET™	Power247 [™]	SuperSOT™-6
ActiveArray™	FAST®	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FASTr™	MicroFET™	QFET [®]	SyncFET™
CoolFET™	FRFET™	MicroPak™	QS™	TinyLogic®
CROSSVOLT™	GlobalOptoisolator™	MICROWIRE™	QT Optoelectronics [™]	TINYOPTO™
DOME™	GTO™	MSX™	Quiet Series [™]	TruTranslation™
EcoSPARK™	HiSeC™	MSXPro™	RapidConfigure™	UHC™
E ² CMOS [™]	I²C™	OCX™	RapidConnect™	UltraFET [®]
EnSigna™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER®	VCX™
FACT™	ISOPLANAR™	OPTOLOGIC [®]	SMART START™	
Across the boar	d. Around the world.™	OPTOPLANAR™	SPM™	
The Power Fran		PACMAN™	Stealth™	
Programmable A		POP™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.