

AIRCHILD

SEMICONDUCTOR

April 2004 Revised May 2004

FSAV331 Dual 4:1 Wide Bandwidth Video Switch

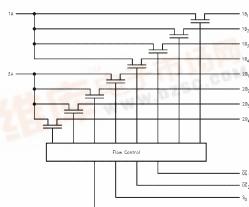
General Description

The Fairchild video switch FSAV331 is a dual 4:1 high speed video switch which can be configured as either multiplexer or demultiplexer. Low On Resistance allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

When the OE Pin is LOW, $\rm S_0$ and $\rm S_1$ connect the A Port to the selected B Port output. When the OE Pin is HIGH, the switch is OPEN and a HIGH-Impedance state exists between the two ports.

Features

- Wide bandwidth: 300 MHz
- -73 dB non adjacent channel crosstalk at 10MHz
- –56 dB Off Isolation at 10MHz
- \blacksquare 3 Ω typical On Resistance (R_{ON})
- Low power consumption (3uA maximum)
- Control input: TTL compatible


Applications

Y/C video or CVBS video switch in LCD, plasma, and projector displays

Ordering Code:

Order Number	Package Number	Package Description					
FSAV331QSC	MQA16	16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide					
FSAV331MTC MTC16 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide							
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.							

Logic Diagram

Connection Diagram

1600	Martin and Martin
OE 1 1 S1 2	$16 - V_{CC}$ $15 - \overline{OE}_2$
$1B_4 - 3$ $1B_3 - 4$ $1B_2 - 5$	$\begin{array}{c} 14 & - S_0 \\ 13 & - 2B_4 \\ 12 & - 2B_3 \end{array}$
1B ₁ — 6 1A — 7	$11 - 2B_2$ $10 - 2B_1$
GND - 8	9 — 2A

Truth Table

OE₂ Function S₁ So OE1 Х Х Н Х Disconnect 1A Х Х Х Н Disconnect 2A L L L L $A = B_1$ $A = B_2$ L н L L н L L L $A = B_3$ н н L L $A = B_4$

Pin Name	Description				
$\overline{OE}_1, \overline{OE}_2$	Bus Switch Enables				
S ₀ , S ₁	Select Inputs				
A	Bus A				
B ₁ , B ₂ , B ₃ , B ₄	Bus B				

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (Note 2)	-0.5V to V _{CC} + 0.5V
DC Input Voltage (VIN) (Note 2)	-0.5V to +7.0V
DC Input Diode Current	–50 mA
DC Output Current	128 mA
Storage Temperature Range (T _{STG})	-65°C to +150 °C
ESD (Human Body Model)	2000V

Recommended Operating Conditions (Note 3)

Supply Voltage (V _{CC})	4.75V to 5.25V
Control Input Voltage	0V to V _{CC}
Switch Input Voltage	0V to V _{CC}
Operating Temperature	$-40^{\circ}C$ to $+85^{\circ}C$
Thermal Resistance	
(TSSOP)	100°C/W
(QSOP)	127°C/W

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The Recommended Operating Conditions tables will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

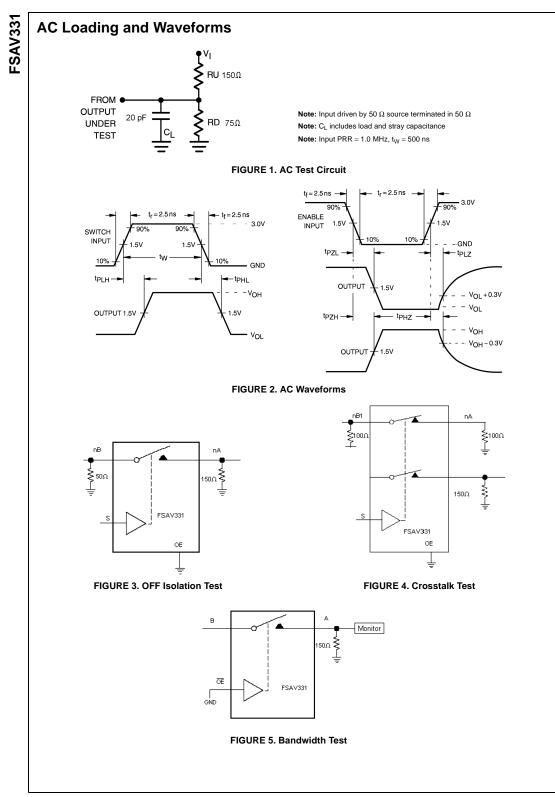
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

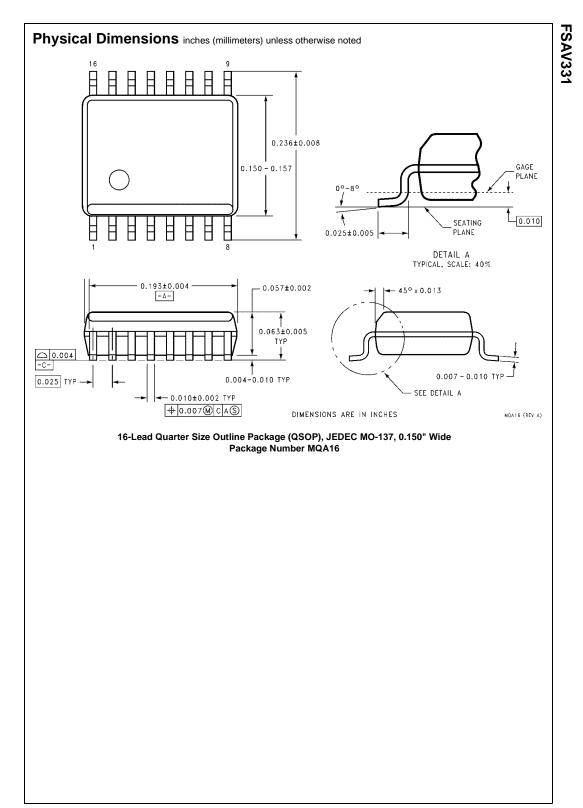
DC Electrical Characteristics All typical value are for $V_{CC} = 5V @ 25^{\circ}C$ unless otherwise specified.

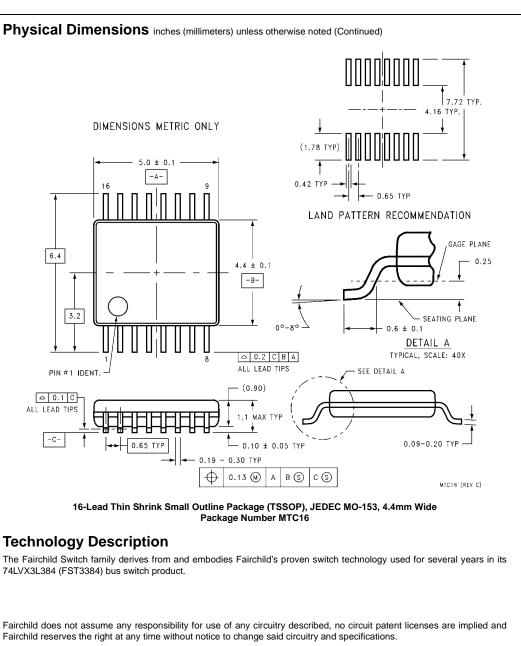
Symbol	Parameter	V _{cc}	$T_A = -40 \ ^\circ C \ to \ +85 \ ^\circ C$			Units	Conditions
		(V)	Min	Тур	Max	Units	conditions
V _{ANALOG}	Analog Signal Range	4.75 - 5.25	0		2.0	V	
V _{IK}	Clamp Diode Voltage	4.75			-1.2	V	I _{IN} = -18 mA
V _{IH}	Input Voltage HIGH	4.75 - 5.25	2.0			V	
V _{IL}	Input Voltage LOW	4.75 - 5.25			0.8	V	
I _{IN}	Control Input Leakage	5.25			±1.0	μA	$V_{IN} = 0V$ to V_{CC}
I _{OZ}	OFF-STATE Leakage Current	5.25			±1.0	μΑ	$0 \le A, B \le V_{CC}$
R _{ON}	Switch On Resistance	4.75		3.3	7.0	Ω	$V_{IN} = 1V$, $R_L = 75\Omega$, $I_{ON} = 13$ mA
	(Note 4)	4.75		5.0	10.0	Ω	$V_{IN} = 2V, R_L = 75\Omega, I_{ON} = 26 \text{ mA}$
I _{CC}	Quiescent Supply Current	5.25			3.0	μA	$V_{IN} = 0V$ or V_{CC} , $I_{OUT} = 0V$

Note 4: Measured by the voltage drop between A and B Pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).

AC Electrical Characteristics


Т
S
Þ
<u></u>
ω
2


Symbol	Parameter	V _{CC}	$T_A = -40 \ ^\circ C$ to $+85 \ ^\circ C$			Units	Conditions	Figure
Symbol	Falanetei	(V)	Min	Тур	Мах	Units	Conditions	Number
t _{ON}	Turn ON Time S-to-Bus B	4.75 to 5.25	1.0		5.3	ns	$V_1 = 7V$ for t_{P71} and $V_1 = OPEN$ for t_{P7H}	Figures
	Output Enable Time OE-to-A or B	4.75 to 5.25	1.0		5.3	113	$v_{\rm I} = r v$ for $v_{\rm ZL}$ and $v_{\rm I} = 0$ F Livitor $v_{\rm ZH}$	1, 2
t _{OFF}	Turn OFF Time S-to-Bus B	4.75 to 5.25	1.0		5.8	ns	NS $V_I = 7V$ for $t_{PI,7}$ and $V_I = OPEN$ for t_{PH7}	
	Output Disable Time OE-to-A or B	4.75 to 5.25	1.0		5.5	115	$v_{I} = 7 v$ for v_{PLZ} and $v_{I} = OPEN for v_{PHZ}$	1, 2
t _{PLH} ,	Propagation Delay (Note 5)	4.75 to 5.25			0.1	ns	VI OPEN	Figures
t _{PHL}	Select-to-Bus A Delay	4.75 to 5.25			5.0	115	VIOPEN	1, 2
DG	Differential Gain	4.75 to 5.25		0.26		%	$R_L = 150\Omega, f = 3.58MHz$	
DP	Differential Phase	4.75 to 5.25		0.23		Degree	$R_L = 150\Omega$, f = 3.58MHz	
O _{IRR}	Non Adjacent OFF-Isolation	4.75 to 5.25		-56.0		dB	$f = 10MHz, R_L = 150\Omega$	Figure 3
X _{TALK}	Non Adjacent Channel Crosstalk	4.75 to 5.25		-73.0		dB	$R_L = 150\Omega$, f = 10MHz	Figure 4
BW	-3dB Bandwidth	4.75 to 5.25		300		MHz	$R_L = 150\Omega$	Figure 5


Note 5: This specification is guaranteed by design.

Capacitance

Symbol	Parameter	$T_{A} = -40 \text{ °C to } +85 \text{ °C}$ Typ	Units	Conditions
C _{IN}	Control Pin Input Capacitance	3.0	pF	$V_{CC} = 5.0V$
C _{ON}	A/B On Capacitance	39.0	pF	$V_{CC} = 5.0, \overline{OE} = 0V$
C _{OFF}	Port B OFF Capacitance	5.0	pF	V_{CC} and $\overline{OE} = 5.0V$
	Port A OFF Capacitance	13.0	pF	

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com