FAIRCHILD SEMICONDUCTORTN FST16233 16－Bit to 32－Bit Multiplexer／D General Description The Fairchild Switch FST16233 is a 16 －bit to 32 －bit high－ speed CMOS TTL－compatible multiplexer／demultiplexer bus switch．The low on resistance of the switch allows inputs to be connected to outputs without adding propaga－ tion delay or generating additional ground bounce noise． The device can be used in applications where two buses need to be addressed simultaneously．The FST16233 can be used as two 8 －bit to 16 －bit multiplexers or as one 16 －bit to 32 －bit multiplexer Two select $\left(\mathrm{SEL}_{1}, \mathrm{SEL}_{0}\right)$ and two test（ $\mathrm{TEST}_{0}, \mathrm{TEST}_{1}$ ） inputs provide switch enable and multiplexer select control． The FST16233 is designed to prevent through－current when switching buses．

September 1997
Revised December 1999

Absolute Maximum Ratings（Note 1）	
Supply Voltage（ V_{CC} ）	-0.5 V to +7.0 V
DC Switch Voltage（ V_{S} ）	-0.5 V to +7.0 V
DC Input Voltage（ $\mathrm{V}_{\text {IN }}$ ）（ Note 2）	-0.5 V to +7.0 V
DC Input Diode Current（ I_{K} ） $\mathrm{V}_{\mathbf{I N}}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
DC Output（lout）Sink Current	128 mA
DC V ${ }_{\text {CC }} / \mathrm{GND}$ Current（ $\mathrm{l}_{\text {CC }} / \mathrm{I}_{\mathrm{GND}}$ ）	＋／－100mA
Storage Temperature Range（ $\mathrm{T}_{\mathrm{STG}}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating	
Conditions（Note 3）	
Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.0 V to 5.5 V
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to 5.5 V
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	0 V to 5.5 V
Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$	
\quad Switch Control Input	$0 \mathrm{nS} / \mathrm{V}$ to $5 \mathrm{nS} / \mathrm{V}$
Switch $/ / \mathrm{O}$	$0 \mathrm{nS} / \mathrm{V}$ to DC
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} （V）	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ （Note 4）	Max		
V_{IK}	Clamp Diode Voltage	4.5			－1．2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4．0－5．5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4．0－5．5			0.8	V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$
IOFF	OFF－STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance （Note 5）	4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		8	12	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		11	20	Ω	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			3	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND， $\mathrm{I}_{\text {OUT }}=0$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	5.5			2.5	mA	One input at 3.4 V Other inputs at V_{CC} or GND

Note 5：Measured by the voltage drop between A and B pins at the indicated current through the switch．On resistance is determined by the lower of the voltages on the two（A or B）pins．

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$				Units	Conditions	Figure No.
		$\mathrm{V}_{\text {cc }}=4.5-5.5 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$				
		Min	Max	Min	Max			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	A or B, to B or A (Note 6)		0.25		0.25	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$t_{\text {PHL }}, t_{\text {PLH }}$	SEL to A	1.5	6.1		6.8	ns	$\mathrm{V}_{1}=$ OPEN	Figure 1 Figure 2
$\mathrm{t}_{\text {PZH, }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time, SEL or TEST to B	1.0	6.5		7.2	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PZH}} \end{aligned}$	Figure 1 Figure 2
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time, SEL or TEST to B	1.5	7.8		8.5	ns	$\begin{aligned} & \mathrm{V}_{1}=7 \mathrm{~V} \text { for } t_{\mathrm{PLZ}}, \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	Figure 1 Figure 2

resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
Capacitance (Note 7)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control pin Input Capacitance	4		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	6		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, Switch OFF

7: $T_{A}=2 \sigma^{\circ}, f=1 \mathrm{MHz}$, Capacitance is characterized but not tested.

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

tose (rev e)
56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
