

Features/Applications

- *Variable Split-Band Frequency Inversion Voice Scrambler
- 32 Programmable Split Frequencies
- CTCSS HP Filter
- High Recovered Audio Quality
- Low-Power 5 Volt CMOS
- Half-Duplex Switching

Publication D/214/3 July 1994

- Powersave Facility
- Mobile or Cellular Radio Applications
- Fixed or Rolling Code Applications
- Serial/Parallel Load Options: FX214 (Serial), FX224 (Parallel),
- DIL and SMD Package Options

Brief Description

The FX214 and 224 are low-power CMOS LSI devices designed as Variable Split-Band (VSB) voice scramblers.

The device uses separate Rx and Tx paths which are switched for half-duplex operation. To prevent

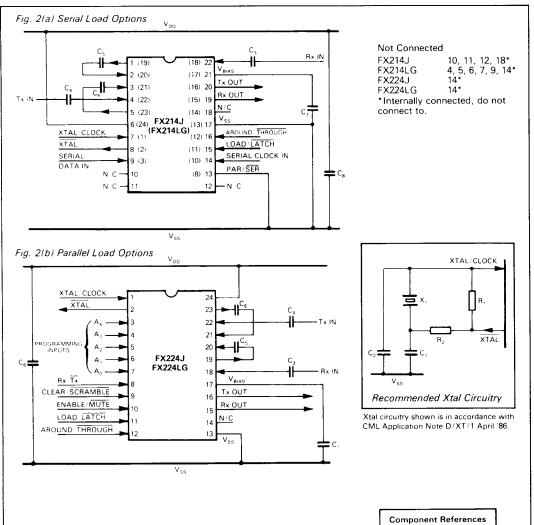
interference from sub-audio products, an on-chip Continuous Tone Controlled Squelch System (CTCSS) highpass filter is automatically switched to the input in Rx and to the output in Tx.

Scrambling is achieved by splitting the input voice frequencies into upper and lower frequency bands using switched capacitor filters, modulating each band with selected carrier frequencies to "frequency invest" the A total of 32 different split-point and carrier frequency combinations are externally programmable using a 5-bit code; this code can be either fixed or varying (rolling), for greater security.

'Sync/Speech Mute', 'Powersave', 'Clear' and 'Audio-Bypass' facilities are controlled via external commands.

Timing and filter clocks are derived internally from an on-chip oscillator requiring only an external 1MHz Xtal or clock pulse input.

This device demonstrates high baseband and carrier frequency rejection with good 'recovered audio' quality. Serial or parallel command loading functions are


Pin Functions

FX FX FX FX FX 214L2 224LS 224LS 224LS 7 1 1 1 Xtal/Clock: Input to the clock oscillator inverter. A 1MHz Xtal input derived 1MHz clock is injected here. See Figure 2. 8 2 2 2 9 3 Serial Data Input: This pin is used, on devices wired in the serial input an 8- bit word representing the digital control functions. This using the serial data clock and is input in the following sequence: CLEAR; Rx/Tx; A ₀ ; A ₁ ; A ₂ ; A ₄ , with the Load/Latch being opera completion. See Timing Diagram Figure 7. 3 3 4 4 5 5 6 6 7 7 7 A ₁ : Programming Inputs: In parallel mode, these are the 5 or A ₂ : whose code defines the split point frequency and the High A ₂ : carrier frquencies. Each of the 5 input pins have a 1MΩ int A ₂ ; A ₁ ; A ₂ ; A ₁ 8 8 Rx/Tx: This digital input selects the Receive or Transmit paths ar Upperband and Lowerband filter bandwidths whilst setting the CT Filter position in the signal path. See Table 1 and Figures 5 and 6. pullup resistor [Rx]. 13 8 Parallel/Serial: This pin defines the loading mode of the digital fut the parallel load devices this pin has no external connections. For devices this pin must be externally conceted to V _{ss} . This pin on all 1MΩ internal pullup resistor. 9 9	
8 2 2 2 9 3 Serial Data Input: This pin is used, on devices wired in the serial input an 8- bit word representing the digital control functions. This using the serial data clock and is input in the following sequence: CLEAR; Rx/Tx: A ₀ ; A ₁ ; A ₂ ; A ₃ ; A ₄ , with the Load/Latch being operatom completion. See Timing Diagram Figure 7. 3 3 4 4 5 5 6 6 7 7 A ₂ : carrier frquencies. Each of the 5 input pins have a 1MΩ int A ₂ : carrier frquencies. Each of the 5 input pins have a 1MΩ int A ₂ : resistor. Table 2 contains programming information . 8 8 Rx/Tx: This digital input selects the Receive or Transmit paths ar Upperband and Lowerband filter bandwidths whilst setting the CTO Filter position in the signal path. See Table 1 and Figures 5 and 6. pullup resistor [Rx]. 13 8 Parallel/Serial: This pin defines the loading mode of the digital further parallel load devices this pin has no external connections. For devices this pin must be externally conected to V _{ss} . This pin on all 1MΩ internal pullup resistor. 9 9 9 Clear/Scramble: This digital input puts the device 'Clear' or 'Freq mode by controlling the application of carrier frequency to the upper mode by controlling the application of carrier frequency to the upper mode by controlling the application of carrier frequency to the upper mode by controlling the application of carrier frequency to the upper mode by controlling the application of carrier frequency to the upper mode by controlling the applicat	
 9 3 Serial Data Input: This pin is used, on devices wired in the serial input an 8- bit word representing the digital control functions. This using the serial data clock and is input in the following sequence: CLEAR; Rx/Tx; A₀; A₁; A₂; A₄, with the Load/Latch being operation. See Timing Diagram Figure 7. 3 3 4 4 5 5 5 4 A₂: Programming Inputs: In parallel mode, these are the 5 or A₂: whose code defines the split point frequency and the High A₂: carrier frquencies. Each of the 5 input pins have a 1MΩ int A₁: resistor. Table 2 contains programming information . 8 8 Rx/Tx: This digital input selects the Receive or Transmit paths ar Upperband and Lowerband filter bandwidths whilst setting the CTO Filter position in the signal path. See Table 1 and Figures 5 and 6. pullup resistor [Rx]. 9 9 Granale/Serial: This pin defines the loading mode of the digital full the parallel load devices this pin has no external connections. For devices this pin must be externally conected to V_{ss}. This pin on all 1MΩ internal pullup resistor. 	out or externally
 a a bit word representing the digital control functions. This using the serial data clock and is input in the following sequence: CLEAR; Rx/Tx; A₀; A₁; A₂; A₃; A₄, with the Load/Latch being operation completion. See Timing Diagram Figure 7. A a A A A A A A A A A A A A A A A A A A	
 4 4 5 5 6 6 7 7 8 8 8 8 8 Rx/Tx: This digital input selects the Receive or Transmit paths ar Upperband and Lowerband filter bandwidths whilst setting the CTO Filter position in the signal path. See Table 1 and Figures 5 and 6. pullup resistor [Rx]. 9 9 9 9 Clear/Scramble: This digital input puts the device 'Clear' or 'Freq mode by controlling the application of carrier frequency to the upper 	word is loaded ENABLE;
 Upperband and Lowerband filter bandwidths whilst setting the CTG Filter position in the signal path. See Table 1 and Figures 5 and 6. pullup resistor [Rx]. Parallel/Serial: This pin defines the loading mode of the digital furthe parallel load devices this pin has no external connections. For devices this pin must be externally conected to V_{ss}. This pin on all 1MΩ internal pullup resistor. 9 9 Clear/Scramble: This digital input puts the device 'Clear' or 'Freq mode by controlling the application of carrier frequency to the upper the set of the s	and Low band
 9 9 Clear/Scramble: This digital input puts the device 'Clear' or 'Freq mode by controlling the application of carrier frequency to the upper the application of the upper the	CSS High Pass
mode by controlling the application of carrier frequency to the upper	serial load
balanced modulators. In 'Scramble' the balanced modulator carrie values are selected by the split point address $A_0 - A_4$ [Table 2]. In 'Clear' carriers are turned off and the balanced modulators are to internally, the lower band is not added to the output signal. $1M\Omega$ in [Clear].	er and lower band er frequency bypassed
1010Enable/Mute: This digital function is used to disable receive or trapaths for rolling code synchronization whilst maintaining bias cond synchronizing information to be transmitted, or receiver audio outp during sync periods, a logic '1' will enable' a logic '0' will disable the [Rx/Tx] audio path. See Table 1. 1MΩ internal pullup resistor.	ditions. To allow out to be removed
1410Serial Clock Input: The externally applied data clock frequency of data along on devices wired in the Serial loading mode. One full da required to shift one data bit completely into the register. See Timin Figure 7. This pin has a 1MΩ internal pullup resistor.	lata clock cycle is
15 11 11 11 11 Load/Latch: Controls the loading of the 8 digital function inputs: E CLEAR; Rx/Tx; A ₀ -A ₄ into the internal register. When this pin is '1' transparent and new data acts directly. For controlled changing of the parallel mode Load/Latch must be kept at logic '0' whilst a new loaded, then Load/Latch strobed 0-1-0 to latch the inputs in. For set data should be loaded with Load/Latch at logic '0' and then Load/L0-1-0 on completion of data loading. 1MΩ internal pullup resistor. S NOTE: Serial and/or parallel loading functions are dependent upon	all 8 inputs are parameters in v function is erial loading the .atch strobed See Figure 7.

Pin Functions

FX 214J	FX 214LG 214L2	FX 224J	FX 224LG 224LS	
16	12	12	12	Around [Powersave]/Through: This digital input is used, when logic '1' to put the device into a powersave condition where all parts of the device except the 1MHz oscillator circuits are shut down, and signal input and output lines made open-circuit, free of all bias. This allows signal paths to be routed externally around the device. whilst reducing current consumption. A logic '0' enables the device to work normally as shown in Table 1. 1M Ω internal pullup resistor.
17	13	13	13	V _{ss} : Negative Supply [GND].
18	14	14	14	Internally connected , leave open circuit .
19	15	15	15	Rx Output: The processed audio signal output. This pin is held at dc 'bias' voltage for all functions except Powersave. This buffered output is driven by the Summer circuit in the Rx mode. Signal paths and bias levels are detailed in the Table 1 and Figure 6.
20	16	16	16	Tx Output: The processed audio output for the transmission channel. This pin is held at a dc 'bias' for all functions except Powersave. This summed and buffered signal is passed through the CTCSS High Pass Filter to the output pin in the Tx mode. Signal paths and bias levels are detailed in Table 1 and Figure 5.
21	17	17	17	${\rm V}_{\rm BIAS}$: Normally at V_{\rm DD}/2 this pin requires an external decoupling capacitor to V_{\rm ss}.
22	18	18	18	Rx Input: The analogue received audio signal input. This pin is held at a dc 'bias' voltage by a 300k Ω on-chip bias resistor which is selected for all functions except Powersave, and therefore requires to be connected to external circuitry by a capacitor, C ₃ . See Figure 2. This input is routed through the CTCSS High Pass Filter in Rx mode to remove sub-audio frequencies from the voiceband. Signal paths and bias levels are detailed in Table 1 and Figure 6.
1	19	19	19	Highband Filter Output: The output of the Input Filter of the Upperband arm. The Rx/Tx function sets the lowpass filter at 3400Hz or 2700Hz respectively. This output must be connected to the Highband Balanced Modulator input via capacitor $C_{s^{\circ}}$. See Figure 2.
2	20	20	20	Highband Balanced Modulator Input: The input to the Balanced Modulator of the Upperband arm. This input must be connected to the Highband Filter Output via capacitor C_s .
3	21	21	21	Lowband Balanced Modulator Input: The input to the Balanced Modulator of the Lowerband arm. This input must be connected to the Lowerband Filter Output with capacitor C_6 .
4	22	22	22	Tx Input: This is the analogue 'Clear' audio input for the VSB scrambler. This pin is held at a dc 'bias' voltage by a 300K Ω on-chip bias resistor which is selected for all functions except Powersave, and therefore requires to be connected to external circuitry by C ₄ . This input, in the Tx mode, is connected to Upper and Lowerband input filters, signal paths and bias levels are detailed in Table 1 and Figure 5.
5	23	23	23	Lowband Filter Output: The output of the Input Filter of the Lowerband arm, the Rx/Tx function determines which filter is used [Filter 1 or 2]. Figures 5 and 6. This output must be connected to the Lowerband Balanced Modulator Input via $C_{\rm g}$.
6	24	24	24	V _{pp} : A single + 5V supply is required.

Component Connections

Unit Value

1M

Selectable 33p

68p 15n 15n 1.0μ 1.0μ 1.0μ 1.0μ 1.0μ

Component

R.

Roooodooox

Application Information

This device can be used in 'Scramble' (frequency inversion) or 'Clear' speech modes. The inversion frequencies, when selected are controlled by the ROM address code (table 2). Keeping the code in one state (fixed) is the simplest form of operation. A more secure method is to continually change the ROM address code (rolling code) therefore changing splitpoint and carrier frequencies. This method requires some external form of code change generation with synchronization between transmit and receive stations. Many variations of code sequence are possible.

The recommended external component connections

F_2) are selected and set in accordance with the ROM

are shown in figure 2. In the Scramble mode, Splitpoint and Low and High band carrier frequencies (F_1,

address code present at the inputs A0 to A4, See

Table 2.

During the Clear speech function both Lower and Upperband filter arms are selected (figures 5 or 6), the carrier frequencies are turned off and the balanced modulators are bypassed internally. The Low band audio is removed from the output signal prior to summation.

Enable/Mute

To enable code synchronization to be transmitted the speech output can be interrupted with the Enable/Mute function. A logic '0' will isolate the whole device whilst leaving the audio input and output pins at bias level. See Table 1.

Powersave

When the Around/Through function is at a logic '1' the device is in the powersave condition. Audio signals may be hardwired around the device normally as the input and output pins are open circuit. See Table 1.

Effect of Chosen Function on Inputs and Outputs		CHOSEN FUNCTION				
		Rx = '1'	$\overline{Tx} = 0^{\prime}$	Mute = '0'	Around (Powersave) = '1'	
Rx Input	Path	Enabled	Disconnect	Disconnect	High Impedance	
	Level	Bias	Bias	Bias	- riign impedance	
Rx Output	Path	Enabled	Disconnected	Disconnect	High Impedance	
in output	Level	Bias	Bias	Bias	righ impedance	
Tx Input	Path	Disconnected	Enabled	Enabled	High Impedance	
	Level	Bias	Bias	Bias	High impedance	
Tx Output	Path	Disconnected	Enabled	Disconnected	High Impedance	
	Level	Bias	Bias	Bias		

Table 1 Functions Influencing Signal Paths

IOM Address A ₄ – A ₀	Split Point Hz	Low Band Carrier, Hz f _{c1}	High Band Carrier, Hz f _{c2}
00000	2800	3105	6172
00001	2625	2923	6024
00010	2470	2777	5813
00011	2333	2631	5681
00100	2210	2512	5555
00101	2100	2403	5494
00110	2000	2304	5376
00111	1909	2212	5263
01000	1826	2127	5208
01001	1750	2049	5102
01010	1680	1984	5050
01011	1555	1858	4950
01100	1448	1748	4807
01101	1354	1655	4716
01110	1272	1572	4629
01111	1200	1501	4587

ROM Address A ₄ – A ₀	Split Point Hz	Low Band Carrier, Hz f _{c1}	High Band Carrier, Hz ^f _{c2}
10000	1135	1436	4504
10001	1050	1351	4424
10010	976	1278	4347
10011	913	1213	4310
10100	857	1157	4273
10101	792	1094	4166
10110	736	1037	4132
10111	688	988	4065
11000	636	936	4032
11001	591	891	3968
11010	552	853	3937
11011	512	813	3906
11100	471	772	3846
11101	428	728	3816
11110	388	688	3787
11111	350	650	3731

Application Information

For the following descriptions, the term 'FX214' can be taken to mean FX214 or FX224.

Audio Quality

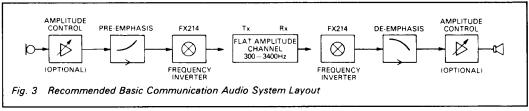


Figure 3 shows the recommended basic audio system layout using added pre- and de-emphasis circuitry to maintain good recovered speech quality. In the Transmit mode *Do Not* pre-emphasise the audio output of the FX214. In the Receive mode de-emphasis should be used after the FX214.

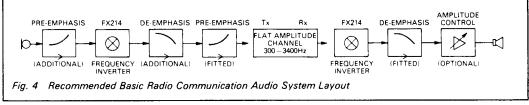
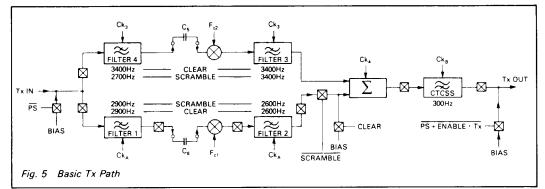
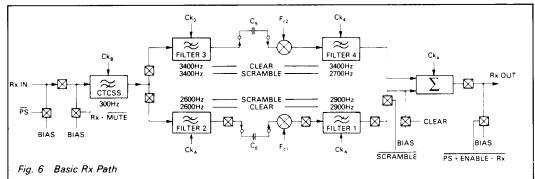




Figure 4 shows the recommended basic audio system layout if it is necessary to install the FX214 within a radio having pre- and de-emphasis circuitry as a standard. This is where post-emphasis access is not possible in the transmitter.

During the Transmit function the Low Pass and CTCSS filters are configured automatically as shown in Figure 5, with cut-off frequencies (-3dB) indicated.

During the Receive function the Low Pass and CTCSS filters are configured automatically as shown in Figure 6

Electrical Specifications

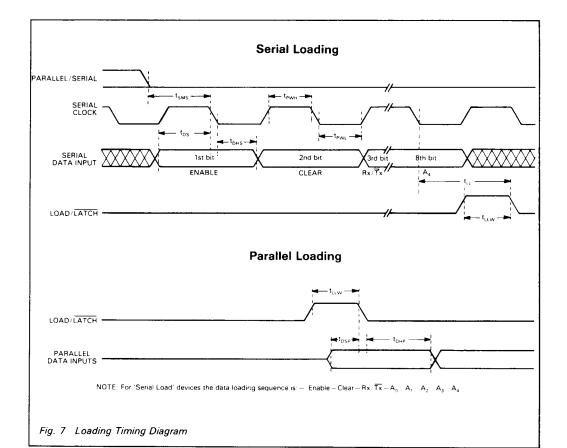
Absolute Maximum Ratings

Exceeding the maximum rating can result in device damage. Operation of the device outside the operating limits is not implied.

Supply voltage		-0.3V to 7.0V
Input voltage at any pin (ref $V_{SS} = OV$)	$-0.3V$ to $(V_{DD} + 0.3V)$
Sink/source current (supply pins)		± 30mA
(other pins)		± 20mA
Total device dissipation @ 25°C		800mW Max.
Derating		10mW/°C
Operating temperature range: FX214J/	224J	- 30°C to + 85°C (Ceramic)
FX214L0	G/224LG	- 30°C to + 70°C (Plastic)
Storage temperature range: FX214J/	224J	- 55°C to + 125°C (Ceramic)
FX214LC	6/224LG	- 40°C to +85°C (Plastic)

Operating Limits

All characteristics measured using the following parameters unless otherwise specified: $V_{DD} = 5.0V$, $T_{amb} = 25^{\circ}$ C, $F_{clk} = 1.0$ MHz, Audio Level Ref: 0dB = 775mVrms.


Characteristics	See Note	Min.	Тур.	Max.	Unit
Static Values		4.5	-		
Supply voltage Supply current (Enabled)		4.5	5 8	5.5	V mA
Supply current (Powersave)		-	1.2		mA
Analogue Input Impedances					
Tx/Rx Input (Enabled)		_	100	_	kΩ
Tx/Rx Input (Powersave)		1		-	MΩ
Balanced Modulator			40	_	kΩ
Analogue Output Impedances					
Rx Output (Tx Mode)		-	100	_	kΩ
Rx Output (Rx Mode)			—.	2	kΩ
Rx Output (Powersave)		1		_	MΩ
Tx Output (Tx Mode)		-	_	2	kΩ
Tx Output (Rx Mode)			100	—	kΩ
Tx Output (Powersave) Input LPF		1	_	1	MΩ kΩ
Digital Values					
Digital Input Impedance		100	_	-	kΩ
Dynamic Values					
Input Logic '1'		3.5		_	V
Input Logic '0'			_	1.5	V
Xtal/Clock Frequency		-	1	-	MHz
Analogue Input Level		- 18	_	+ 6	dB
Carrier Breakthrough	1	_	- 55	_	dB
Baseband Breakthrough	1, 2 or 3		- 33	_	dB
Filter Clock Breakthrough	1, 2 or 3	-	- 50	-	dB
Output Noise	1, 4	_	- 45	—	dB
Passband Characteristics	_				
Clear Mode	7				
Passband Gain		-	0		dB
Output Lower 3dB Point (Rx or Tx)			300		Hz
Output Upper 3dB Point (Rx or Tx)		-	3400	_	Hz
Scramble-Descramble	5				
Received Signal Passband Gain	6	_	0	_	dB
Received Signal Lower 3dB Point		-	400	-	Hz
Received Signal Upper 3dB Point		—	2700	-	Hz
Transmitted Signal Lower 3dB Point		-	300		Hz
Transmitted Signal Upper 3dB Point		_	3400	—	Hz
CTCSS (Highpass Filter)					
- 3dB Point		-	300	_	Hz
Passband Gain		-	0	_	dB
Stopband Attenuation at f>250 Hz		-	40	-	dB

Electrical Specifications...

Characteristics	See Note	Min.	Тур.	Max.	Unit
Timing (Figure 7)					
Serial Mode Enable Set Up (t _{SMS}) Serial Clock 'High' Pulse Width (t _{PWH})		250		_	ns
Serial Clock 'High' Pulse Width (texnu)		250	-	_	ns
Serial Clock 'Low' Pulse Width (tour)		250	_	-	ns
Data Set Up Time (t_{DS}) Data Hold Time (t_{DHS}) Load/Latch Set Up Time (t_{LL}) Load/Latch Pulse Width (t_{LLW})		150	-		ns
Data Hold Time (tpHs)		50	-	-	ns
Load/Latch Set Up Time (t ₁₁)		250	_	_	ns
Load/Latch Pulse Width (t		150	_		ns
Data Set Up Time (t _{DSP}) Data Hold Time (t _{DHP})		150	_	_	ns
Data Hold Time (tone)		20	~	_	ns

Notes: 1. Measured at the output of a single device.

- 2. Tx Mode.
- 3. Rx Mode.
- With input A.C. short-circuited to V_{SS}.
 Measured at the output of a receiving device in a scrambler-descrambler system with a transmission channel having a flat amplitude response and a bandwidth of 300Hz to 3400Hz and measured relative to the input signal at the transmitting device.
 Excluding split point ± 150Hz.
 Measured at the Rx or Tx output pin of a single device.

Package Outlines

The FX214 and FX224 are available in the package styles outlined below. Mechanical package diagrams and specifications are detailed in Section 10 of this document.

Pin 1 identification marking is shown on the relevant diagram and pins on all package styles number anti-clockwise when viewed from the top.

FX214J 22-pin cerdip DIL (J3)

NOT TO SCALE

Max. Body Length 27.38mm Max. Body Width 9.75mm

____,

FX214LG/224LG 24-pin quad plastic encapsulated bent and cropped (L1)

NOT TO SCALE

Max. Body Length 10.25mm Max. Body Width 10.25mm

Handling Precautions

The FX214 and FX224 are CMOS LSI circuits which include input protection. However precautions should be taken to prevent static discharges which may cause damage.

FX224J 24-pin cerdip DIL (J4) NOT TO SCALE Max. Body Length 32.03mm Max. Body Width 14.81mm

Package Outlines

FX214L2/224LS 24-lead plastic leaded chip carrier

NOT TO SCALE

inin in the second seco

Max. Body Length	10.40mm	1
Max. Body Width	10.40mm	ł

Ordering Information

FX214J	22-pin cerdip DIL	(J3)
FX214LG	24-pin quad plastic encapsulated bent and croppped	(L1)
FX214L2	24-lead plastic leaded chip carrier)
FX224J	24-pin cerdip DIL	(J4)
FX224LG	24-pin quad plastic encapsulated bent and croppped	(L1)
FX224LS	24-lead plastic leaded chip carrier	(L2)

CML does not assume any responsibility for the use of any circuitry described. No circuit patent licences are implied and CML reserves the right at any time without notice to change the said circuitry.

CML Product Data

In the process of creating a more global image, the three standard product se companies of CML Microsystems Plc (Consumer Microcircuits Limited (UK), I (USA) and CML Microcircuits (Singapore) Pte Ltd) have undergone name cha maintaining their separate new names (CML Microcircuits (UK) Ltd, CML Micro Inc and CML Microcircuits (Singapore) Pte Ltd), now operate under the single circuits.

These companies are all 100% owned operating companies of the CML Micro Group and these changes are purely changes of name and do not change an entities and hence will have no effect on any agreements or contacts currently

CML Microcircuits Product Prefix Codes

Until the latter part of 1996, the differentiator between products manufactured MXCOM, Inc. and Consumer Microcircuits Limited were denoted by the prefix respectively. These products use the same silicon etc. and today still carry the In the latter part of 1996, both companies adopted the common prefix: CMX.

This notification is relevant product information to which it is attached.

Company contact information is as below:

COMMUNICATION SEMICONDUCTORS

Oval Park, Langford, Maldon, Essex, CM9 6WG, England Tel: +44 (0)1621 875500 Fax: +44 (0)1621 875600 uk.sales@cmlmicro.com www.cmlmicro.com

COMMUNICATION SEMICONDUCTORS

4800 Bethania Station Road, Winston-Salem, NC 27105, USA Tel: +1 336 744 5050, 0800 638 5577 Fax: +1 336 744 5054 us.sales@cmlmicro.com www.cmlmicro.com No 2 Kallang 06 Mactech Ir Singapore 34 Tel: +65 74 Fax: +65 74 sg.sales@cm www.cmlmicro

CML Product Data

In the process of creating a more global image, the three standard product se companies of CML Microsystems Plc (Consumer Microcircuits Limited (UK), I (USA) and CML Microcircuits (Singapore) Pte Ltd) have undergone name cha maintaining their separate new names (CML Microcircuits (UK) Ltd, CML Micro Inc and CML Microcircuits (Singapore) Pte Ltd), now operate under the single circuits.

These companies are all 100% owned operating companies of the CML Micro Group and these changes are purely changes of name and do not change an entities and hence will have no effect on any agreements or contacts currently

CML Microcircuits Product Prefix Codes

Until the latter part of 1996, the differentiator between products manufactured MXCOM, Inc. and Consumer Microcircuits Limited were denoted by the prefix respectively. These products use the same silicon etc. and today still carry the In the latter part of 1996, both companies adopted the common prefix: CMX.

This notification is relevant product information to which it is attached.

Company contact information is as below:

COMMUNICATION SEMICONDUCTORS

Oval Park, Langford, Maldon, Essex, CM9 6WG, England Tel: +44 (0)1621 875500 Fax: +44 (0)1621 875600 uk.sales@cmlmicro.com www.cmlmicro.com

COMMUNICATION SEMICONDUCTORS

4800 Bethania Station Road, Winston-Salem, NC 27105, USA Tel: +1 336 744 5050, 0800 638 5577 Fax: +1 336 744 5054 us.sales@cmlmicro.com www.cmlmicro.com No 2 Kallang 06 Mactech Ir Singapore 34 Tel: +65 74 Fax: +65 74 sg.sales@cm www.cmlmicro