## OMRON

# **MOS FET Relays**

**G3VM-41GR5** 

New MOS FET Relay with Low Output Capacitance and ON Resistance ( $C \times R = 10pF \cdot \Omega$ ) in a 40-V Load Voltage Model

- $\bullet$  ON resistance of 1  $\Omega$  (typical) suppresses output signal attenuation.
- Leakage current of 1.0 nA max. when output relay is open.

#### **■**Application Examples

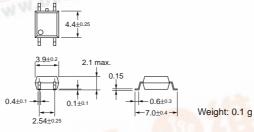
- Semiconductor inspection tools
- Measurement devices
- Broadband systems
- Data loggers



**Note:** The actual product is marked differently from the image shown here.

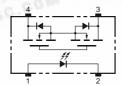
#### ■ List of Models

| Contact form | Terminals        | Load voltage (peak value) | Model          | Number per stick | Number per tape |
|--------------|------------------|---------------------------|----------------|------------------|-----------------|
| SPST-NO      | Surface-mounting | 40 VAC                    | G3VM-41GR5     | 100              | - Marian        |
| terminals    |                  |                           | G3VM-41GR5(TR) |                  | 2,500           |


#### **■** Dimensions

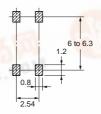
Note: All units are in millimeters unless otherwise indicated.

#### G3VM-41GR5




**Note:** The actual product is marked differently from the image shown here.




#### ■ Terminal Arrangement/Internal Connections (Top View)

G3VM-41GR5



#### ■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-41GR5





Note:

#### ■ Absolute Maximum Ratings (Ta = 25°C)

| Item                         |                                                            | Symbol                | Rating      | Unit  | Measurement Conditions        |
|------------------------------|------------------------------------------------------------|-----------------------|-------------|-------|-------------------------------|
| Input                        | LED forward current                                        | IF                    | 50          | mA    |                               |
|                              | Repetitive peak LED forward current                        | I <sub>FP</sub>       | 1           | Α     | 100 μs pulses, 100 pps        |
|                              | LED forward current reduction rate                         | Δ I <sub>F</sub> /°C  | -0.5        | mA/°C | Ta ≥ 25°C                     |
|                              | LED reverse voltage                                        | $V_R$                 | 5           | V     |                               |
|                              | Connection temperature                                     | Tj                    | 125         | °C    |                               |
| Output                       | Output dielectric strength                                 | V <sub>OFF</sub>      | 40          | V     |                               |
|                              | Continuous load current                                    | I <sub>O</sub>        | 300         | mA    |                               |
|                              | ON current reduction rate                                  | Δ I <sub>ON</sub> /°C | -3.0        | mA/°C | Ta ≥ 25°C                     |
|                              | Connection temperature                                     | Tj                    | 125         | °C    |                               |
| Dielectr<br>output (         | Dielectric strength between input and output (See note 1.) |                       | 1,500       | Vrms  | AC for 1 min                  |
| Operati                      | Operating temperature                                      |                       | -20 to +85  | °C    | With no icing or condensation |
| Storage                      | Storage temperature                                        |                       | -40 to +125 | °C    | With no icing or condensation |
| Soldering temperature (10 s) |                                                            |                       | 260         | °C    | 10 s                          |

The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

#### **■** Electrical Characteristics (Ta = 25°C)

| ltem                           |                                              | Symbol            | Mini-<br>mum | Typical | Maxi-<br>mum | Unit | Measurement conditions                                     |  |
|--------------------------------|----------------------------------------------|-------------------|--------------|---------|--------------|------|------------------------------------------------------------|--|
| Input                          | LED forward voltage                          | $V_{F}$           | 1.0          | 1.15    | 1.3          | V    | I <sub>F</sub> = 10 mA                                     |  |
|                                | Reverse current                              | I <sub>R</sub>    |              |         | 10           | μА   | V <sub>R</sub> = 5 V                                       |  |
|                                | Capacity between ter-<br>minals              | C <sub>T</sub>    |              | 15      |              | pF   | V = 0, f = 1 MHz                                           |  |
|                                | Trigger LED forward current                  | I <sub>FT</sub>   |              |         | 4            | mA   | I <sub>O</sub> = 100 mA                                    |  |
| Output                         | Maximum resistance with output ON            | R <sub>ON</sub>   |              | 1.0     | 1.5          | Ω    | I <sub>F</sub> = 5 mA,<br>I <sub>O</sub> = 300 mA, t < 1 s |  |
|                                | Current leakage<br>when the relay is<br>open | I <sub>LEAK</sub> |              |         | 1.0          | nA   | V <sub>OFF</sub> = 30 V, Ta = 50°C                         |  |
|                                | Capacity between ter-<br>minals              | C <sub>OFF</sub>  |              | 10.0    | 14.0         | pF   | V = 0, f = 100 MHz,<br>t < 1 s                             |  |
| Capacity between I/O terminals |                                              | C <sub>I-O</sub>  |              | 0.8     |              | pF   | f = 1 MHz, Vs = 0 V                                        |  |
| Insulation resistance          |                                              | R <sub>I-O</sub>  | 1,000        |         |              | МΩ   | $V_{I-O}$ = 500 VDC,<br>RoH $\leq$ 60%                     |  |
| Turn-ON time                   |                                              | tON               |              |         | 0.5          | ms   | $I_F = 10$ mA, $R_L = 200 \Omega$ ,                        |  |
| Turn-OFF time                  |                                              | tOFF              |              |         | 0.5          | ms   | $V_{DD} = 20 \text{ V (See note 2.)}$                      |  |

# IF J VOUT

Note:

2. Turn-ON and Turn-OFF

#### ■ Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

| Item                          | Symbol          | Minimum | Typical | Maximum | Unit |
|-------------------------------|-----------------|---------|---------|---------|------|
| Output dielectric strength    | V <sub>DD</sub> |         |         | 32      | V    |
| Operating LED forward current | I <sub>F</sub>  | 10      |         | 30      | mA   |
| Continuous load current       | I <sub>O</sub>  |         |         | 300     | mA   |
| Operating temperature         | Ta              | 25      |         | 60      | °C   |

#### **■** Engineering Data

### Load Current vs. Ambient Temperature G3VM-41GR5

# 900 400 400 200 40 60 80 100 Ambient temperature (°C)

#### **■** Safety Precautions

Refer to page 6 for precautions common to all G3VM models.