

1 pC Charge Injection, 100 pA Leakage CMOS ± 5 V/+5 V/+3 V Dual SPDT Switch

ADG636

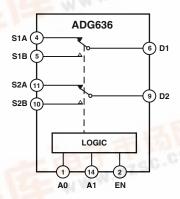
FEATURES

1 pC Charge Injection
±2.7 V to ±5.5 V Dual Supply
+2.7 V to +5.5 V Single Supply
Automotive Temperature Range: -40°C to +125°C
100 pA (Max @ 25°C) Leakage Currents
85 Ω Typ On Resistance
Rail-to-Rail Operation
Fast Switching Times
Typical Power Consumption (<0.1 μW)
TTL/CMOS Compatible Inputs
14-Lead TSSOP Package

APPLICATIONS

Automatic Test Equipment
Data Acquisition Systems
Battery-Powered Instruments
Communication Systems
Sample-and-Hold Systems
Remote Powered Equipment
Audio and Video Signal Routing
Relay Replacement
Avionics

GENERAL DESCRIPTION


The ADG636 is a monolithic device, comprising two independently selectable CMOS SPDT (Single Pole, Double Throw) switches. When on, each switch conducts equally well in both directions.

The ADG636 operates from a dual ± 2.7 V to ± 5.5 V supply, or from a single supply of ± 2.7 V to ± 5.5 V.

This switch offers ultralow charge injection of ± 1.5 pC over the entire signal range and leakage current of 10 pA typical at 25°C. It offers on-resistance of 85 Ω typ, which is matched to within 2 Ω between channels. The ADG636 also has low power dissipation yet gives high switching speeds.

The ADG636 exhibits break-before-make switching action and is available in a 14-lead TSSOP package.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- 1. Ultralow Charge Injection (Q_{INJ}: ±1.5 pC typ over full signal range)
- 2. Leakage Current <0.25 nA max @ 85°C
- 3. Dual ± 2.7 V to ± 5 V or Single ± 2.7 V to ± 5.5 V Supply
- 4. Automotive Temperature Range: -40°C to +125°C
- 5. Small 14-Lead TSSOP Package

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, norforany infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com

ADG636-SPECIFICATIONS

 $\textbf{DUAL SUPPLY}^{1} \text{ (V}_{DD} = 5 \text{ V} \pm 10\%, \text{ V}_{SS} = -5 \text{ V} \pm 10\%, \text{ GND} = 0 \text{ V}. \text{ All specifications} -40°C \text{ to } +125°C \text{ unless noted.})$

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{SS} to V_{DD}	V	
			55 EE		$V_{DD} = +4.5 \text{ V}, V_{SS} = -4.5 \text{ V}$
On Resistance (R _{ON})	85			Ω typ	$V_S = \pm 3 \text{ V}, I_S = -1 \text{ mA},$
011 1100101411100 (11(OIV)	115	140	160	Ω max	Test Circuit 1
On Resistance Match Between	-13	110	100		1 tot on the 1
Channels (DR _{ON})	2			Ω typ	$V_S = \pm 3 \text{ V}, I_S = -1 \text{ mA}$
Chamiels (DRON)	4	5.5	6.5	Ω max	V5 ±5 V, 15 1 mm1
On Resistance Flatness (R _{FLAT(ON)})	25	5.5	0.5	Ω typ	$V_S = \pm 3 \text{ V}, I_S = -1 \text{ mA}$
On resistance Flatness (RFLAT(ON))	40	55	60	Ω max	V5 ±5 V, IS I IIII
LEAVACE CLIDDENITS					V - 155VV - 55V
LEAKAGE CURRENTS	±0.01				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01	10.05	1.0	nA typ	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V},$
D CEEL 1 1 (OFF)	±0.1	±0.25	±2	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01			nA typ	$V_S = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V},$
	±0.1	± 0.25	± 2	nA max	Test Circuit 2
Channel ON Leakage I_{D_i} I_{S_i} (ON)	±0.01			nA typ	$V_S = V_D = \pm 4.5 \text{ V}$, Test Circuit 3
	±0.1	±0.25	±6	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			± 0.1	μA max	
C _{IN} , Digital Input Capacitance	2			pF typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time	70			ns typ	$V_{S1A} = +3 \text{ V}, V_{S1B} = -3 \text{ V}, R_L = 300 \Omega$
	100	120	150	ns max	$C_L = 35 \text{ pF}, \text{ Test Circuit 4}$
t _{ON} Enable	100	120	130	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
ton Endoic	135	170	190	ns max	$V_S = 3 \text{ V}$, Test Circuit 5
t _{OFF} Enable	55	170	170	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
toff Enable	80	90	100	1	
Drook Defens Make Time Deleve +	20	90	100	ns max	$V_S = 3 \text{ V}$, Test Circuit 5
Break-Before-Make Time Delay, t_{BBM}	20		10	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$,
Channa Inication	1.0		10	ns min	$V_S = 3 \text{ V}$, Test Circuit 5
Charge Injection	-1.2			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF},$
Off Isolation	65			4D	Test Circuit 7
Off Isolation	-65			dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz,$
Champel to Champel Correctable	65			JD	Test Circuit 8 $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$,
Channel-to-Channel Crosstalk	−65			dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $I = 10 \text{ MHz}$, Test Circuit 10
Bandwidth –3 dB	610			MHz typ	R _L = 50 Ω , C _L = 5 pF, Test Circuit 9
C _S (OFF)	5				f = 1 MHz
	8			pF typ	f = 1 MHz
C_D (OFF) C_D , C_S (ON)	8			pF typ pF typ	f = 1 MHz
· · · · · · ·	U			pr typ	
POWER REQUIREMENTS	0.001				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
I_{DD}	0.001			μA typ	Digital Inputs = 0 V or 5.5 V
			1.0	μA max	
I_{SS}	0.001			μA typ	Digital Inputs = 0 V or 5.5 V
			1.0	μA max	

NOTES

Specifications subject to change without notice.

¹Y Version Temperature Range: -40°C to +125°C

²Guaranteed by design, not subject to production test.

 $\textbf{SINGLE SUPPLY}^{1} \ \ (\textbf{V}_{DD} = 5 \ \textbf{V} \ \pm \ 10\%, \ \textbf{V}_{SS} = 0 \ \textbf{V}, \ \textbf{GND} = 0 \ \textbf{V}. \ \textbf{All specifications} \ -40^{\circ} \textbf{C} \ to \ +125^{\circ} \textbf{C} \ unless \ otherwise \ noted.)$

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
			· · · · · · · · · · · · · · · · · · ·		$V_{DD} = 4.5 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance (R _{ON})	210			Ω typ	$V_S = 3.5 \text{ V}, I_S = -1 \text{ mA},$
	290	350	380	Ω max	Test Circuit 1
On Resistance Match Between					
Channels (ΔR_{ON})	3			Ω typ	$V_S = 3.5 \text{ V}, I_S = -1 \text{ mA}$
		12	13	Ω max	
LEAKAGE CURRENTS					V _{DD} = 5.5 V
Source OFF Leakage I _S (OFF)	±0.01			nA typ	$V_{\rm DD} = 3.3 \text{ V}$ $V_{\rm S} = 1 \text{ V}/4.5 \text{ V}, V_{\rm D} = 4.5 \text{ V}/1 \text{ V},$
Source Off Leakage is (Off)	±0.01 ±0.1	±0.25	±2	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	± 0.01	±0.25	± 2	nA typ	$V_S = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}$
Diam off Ecakage In (off)	±0.01	±0.25	±2	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.01	_0.23	- -	nA typ	$V_S = V_D = 4.5 \text{ V/1 V},$
chamies of Evaluage 15, 15 (of t)	±0.1	±0.25	±6	nA max	Test Circuit 3
DIGITAL DIDITIO					1000 000000
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current	0.005				37 _ 37
I _{INL} or I _{INH}	0.005		101	μA typ	$V_{\rm IN} = V_{\rm INL}$ or $V_{\rm INH}$
C _{IN} , Digital Input Capacitance	2		± 0.1	μA max	
				pF typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time	90			ns typ	$V_{S1A} = 3 \text{ V}, V_{S1B} = 0 \text{ V}, R_L = 300 \Omega,$
	150	185	210	ns max	$C_L = 35 \text{ pF}$, Test Circuit 4
t _{ON} Enable	135			ns typ	$R_{L} = 300 \ \Omega, C_{L} = 35 \ pF$
	180	235	275	ns max	$V_S = 3 \text{ V}$, Test Circuit 5
t _{OFF} Enable	70			ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
D 1 D 6 W 1 E D 1	105	120	135	ns max	$V_S = 3 \text{ V}$, Test Circuit 5
Break-Before-Make Time Delay, t _{BBM}	30		10	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$,
Cl. I	0.2		10	ns min	$V_s = 3 \text{ V}$, Test Circuit 5
Charge Injection	0.3			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF},$
Off I1-4:	60			JD	Test Circuit 7
Off Isolation	-60			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$, Test Circuit 8
Channel-to-Channel Crosstalk	-65			dR typ	
Chamier-to-Chamier Crosstark	-03			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$, Test Circuit 10
Bandwidth –3 dB	530			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C _S (OFF)	5			pF typ	f = 1 MHz
$C_{\rm S}$ (OFF)	8			pF typ	f = 1 MHz
$C_D(ON)$ $C_D, C_S(ON)$	8			pF typ	f = 1 MHz
				F- 57F	
POWER REQUIREMENTS					$V_{DD} = 5.5 \text{ V}$
ī	0.001				Digital Inputs = 0 V or 5.5 V
I_{DD}	0.001		1.0	μA typ	
			1.0	μA max	

NOTES

¹Y Version Temperature Range: −40°C to +125°C

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG636

$\textbf{SINGLE SUPPLY}^{1} \ \ (\textit{V}_{DD} = 3 \ \textit{V} \ \pm \ 10\%, \textit{V}_{SS} = 0 \ \textit{V}, \ \textit{GND} = 0 \ \textit{V}. \ \textit{All specifications} \ -40^{\circ}\textrm{C} \ to \ +125^{\circ}\textrm{C} \ unless \ otherwise \ noted.)$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ANALOG SWITCH					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Analog Signal Range			0 V to V_{DD}	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	380	420	460	Ω typ	$V_S = 1.5 \text{ V}, I_S = -1 \text{ mA}, \text{ Test Circuit 1}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	0.	X7 15X7 1 A
	Channels (ΔR_{ON})			5	Ω typ	$V_S = 1.5 \text{ V}, I_S = -1 \text{ mA}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source OFF Leakage I _S (OFF)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D : OFFI I I (OFF)		±0.25	±2		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain OFF Leakage I _D (OFF)		10.05		1	I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Channel ON Laskage I I (ON)		±0.25	±2		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chaimer ON Leakage ID, IS (ON)		+0.25	+6		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		±0.1	±0.23	±0	III I III ax	Test Circuit 9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				• •		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.8	V max	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.005			μΔ typ	V - V or V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{INL} of I _{INH}	0.003		+0.1	1 ' "	VIN - VINL OI VINH
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{IN} , Digital Input Capacitance	2		±0.1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 77	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		170			ne typ	$V_{av} = 2 V V_{avp} = 0 V R_r = 300 O$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Transition Time		390	450	""	
$t_{OFF} \ Enable \\ t_{OFF} \ E$	ton Enable		3,0	130		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			460	530	1	
Break-Before-Make Time Delay, t_{BBM} 80	t _{OFF} Enable	110			ns typ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		175	205	230	ns max	$V_S = 2 V$, Test Circuit 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Break-Before-Make Time Delay, t_{BBM}	80			ns typ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				10	ns min	I
Off Isolation $ -60 $ $ dB typ $ $ R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz, $ $ Test Circuit 8 $ $ R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz, $ $ Test Circuit 10 $ $ Bandwidth -3 dB $ $ C_S (OFF) $ $ 5 $ $ D_D (OFF) $ $ C_D (OFF) $ $ C_D (OFF) $ $ C_D (OFF)$	Charge Injection	0.6			pC typ	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0001 1				10.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Off Isolation	-60			dB typ	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Channel to Channel Crosstalls	65			dR two	
Bandwidth -3 dB 530 MHz typ C_S (OFF) 5 pF typ $f = 1$ MHz $f = 1$ MH	Chamici-to-Chamici Crosstaik	-05			dD typ	
$ \begin{array}{c cccc} C_S (OFF) & 5 & pF typ & f = 1 MHz \\ C_D (OFF) & 8 & pF typ & f = 1 MHz \\ C_{D,} C_S (ON) & 8 & pF typ & f = 1 MHz \\ \end{array} $	Bandwidth –3 dB	530			MHz tvn	
$\begin{array}{c cccc} C_D \ (OFF) & 8 & pF \ typ & f=1 \ MHz \\ C_{D,} \ C_{S} \ (ON) & 8 & pF \ typ & f=1 \ MHz \end{array}$						
$C_{D, C_S}(ON)$ 8 pF typ $f = 1 \text{ MHz}$					I	
DOWNED DECLYDDINGS						
POWER REQUIREMENTS	POWER REQUIREMENTS					$V_{\rm DD}$ = 3.3 V
Digital Inputs = 0 V or 3.3 V	<u> </u>					
I_{DD} 0.001 μ A typ	I_{DD}	0.001			μA typ	
1.0 μA max			1.0	μA max		

NOTES

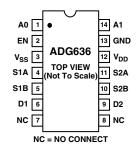
¹Y Version Temperature Range: −40°C to +125°C

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ¹
$(T_A = 25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to V_{SS}
V_{DD} to GND0.3 V to +6.5 V
V_{SS} to GND +0.3 V to -6.5 V
Analog Inputs ² V_{SS} – 0.3 V to V_{DD} + 0.3 V
Digital Inputs ² -0.3 V to $V_{DD} + 0.3 \text{ V}$ or
30 mA, Whichever Occurs First
Peak Current, S or D
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle max) 20 mA
- · · · · · · · · · · · · · · · · · · ·
(Pulsed at 1 ms, 10% Duty Cycle max) 20 mA
(Pulsed at 1 ms, 10% Duty Cycle max) 20 mA Continuous Current, S or D 10 mA

Junction Temperature	150°C
TSSOP Package	
θ_{JA} Thermal Impedance	50°C/W
θ_{IC} Thermal Impedance	27°C/W
Lead Temperature, Soldering (10 seconds)	. 300°C
IR Reflow, Peak Temperature	. 220°C


NOTES

- ¹ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
- ² Overvoltages at EN, A0, A1, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

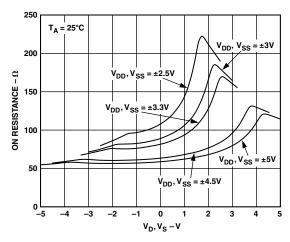
Model	Temperature Range	Package Description	Package Option
ADG636YRU	–40°C to +125°C	Thin Shrink Small Outline (TSSOP)	RU-14

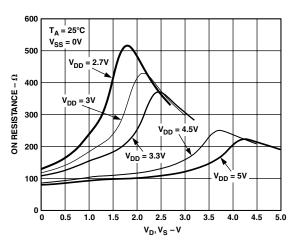
PIN CONFIGURATION

Table I. Truth Table

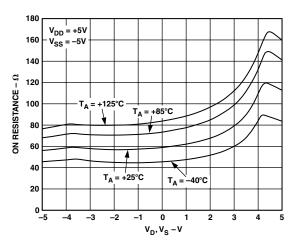
itch
,
2A
2A
2B
2B

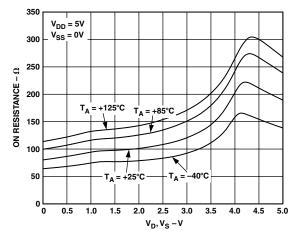
CAUTION_

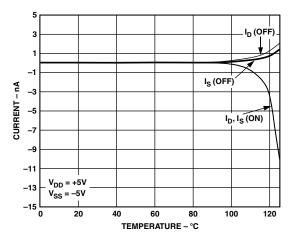

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG636 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

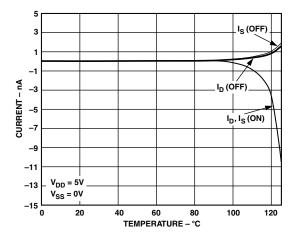

TERMINOLOGY

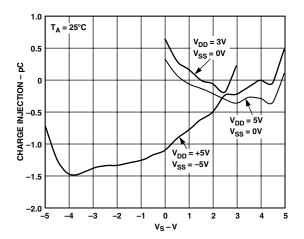
$\overline{ m V_{DD}}$	Most Positive Power Supply Potential
V_{SS}	Most Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground at the device.
GND	Ground (0 V) Reference
I_{DD}	Positive Supply Current
I_{SS}	Negative Supply Current
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
R_{ON}	Ohmic Resistance between D and S
ΔR_{ON}	On Resistance Match between any two channels (i.e., $R_{\rm ON} {\rm max} - R_{\rm ON} {\rm min})$
$R_{FLAT\left(ON\right)}$	Flatness is defined as the difference between the maximum and minimum value of On Resistance as measured over the specified analog signal range.
I _S (OFF)	Source Leakage Current with the Switch "OFF"
I_D (OFF)	Drain Leakage Current with the Switch "OFF"
$I_D, I_S (ON)$	Channel Leakage Current with the Switch "ON"
V_D , V_S	Analog Voltage on Terminals D, S
V_{INL}	Maximum Input Voltage for Logic "0"
V_{INH}	Minimum Input Voltage for Logic "1"
$I_{\rm INL}(I_{\rm INH})$	Input Current of the Digital Input
C _S (OFF)	Channel Input Capacitance for "OFF" condition.
C_D (OFF)	Channel Output Capacitance for "OFF" condition.
C_D , C_S (ON)	"ON" Switch Capacitance
C_{IN}	Digital Input Capacitance
$t_{ON}(EN)$	Delay time between the 50% and 90% points of the digital input and Switch "ON" condition
$t_{OFF}(EN)$	Delay time between the 50% and 90% points of the digital input and Switch "OFF" condition
t _{TRANSITION}	Delay time between the 50% and 90% points of the digital input and Switch "ON" condition when switching from one address state to another.
t_{BBM}	"OFF" time or "ON" time measured between the 80% points of both switches, when switching from one address state to another.
Charge Injection	A measure of the Glitch Impulse transferred from the Digital Input to the Analog Output during switching.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Bandwidth	The Frequency Response of the "ON" Switch
Insertion Loss	Loss Due to the On Resistance of the Switch

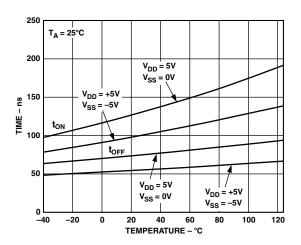

Typical Performance Characteristics—ADG636

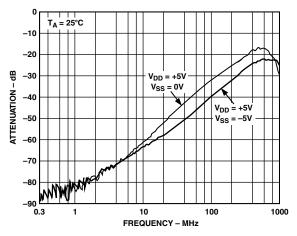

TPC 1. On Resistance vs. V_D (V_S). Dual Supply

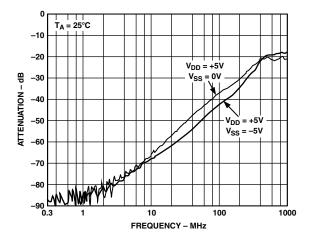

TPC 2. On Resistance vs. V_D (V_S). Single Supply

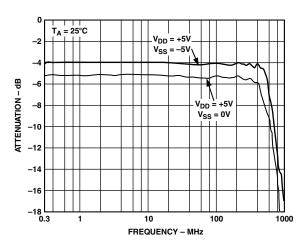

TPC 3. On Resistance vs. V_D (V_S) for Different Temperatures. Dual Supply


TPC 4. On Resistance vs. V_D (V_S) for Different Temperatures. Single Supply

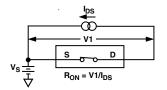

TPC 5. Leakage Currents vs. Temperatures. Dual Supply


TPC 6. Leakage Currents vs. Temperature. Single Supply

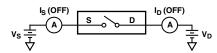

TPC 7. Charge Injection vs. Source Voltage


TPC 8. t_{ON}/t_{OFF} Enable Timing vs. Temperature

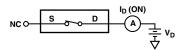
TPC 9. Off Isolation vs. Frequency

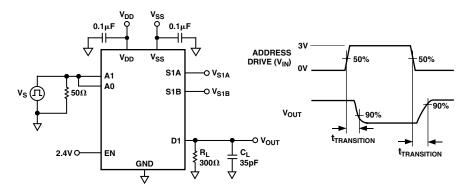


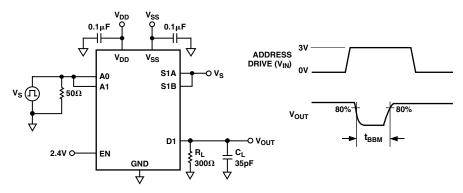
TPC 10. Crosstalk vs. Frequency

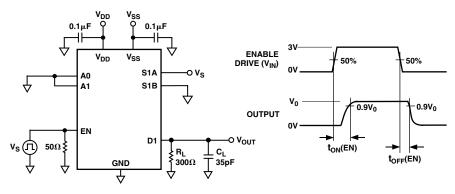


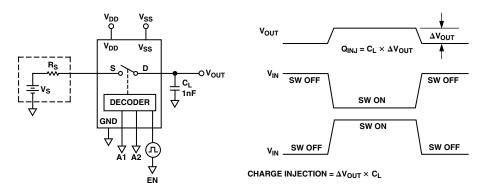
TPC 11. On Response vs. Frequency

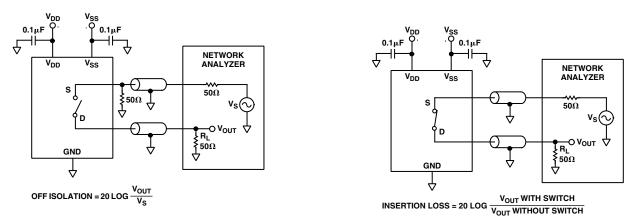

Test Circuits


Test Circuit 1. On Resistance

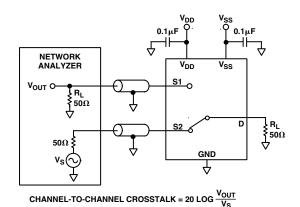

Test Circuit 2. Off Leakage


Test Circuit 3. On Leakage


Test Circuit 4. Transition Time, t_{TRANSITION}


Test Circuit 5. Break-Before-Make Delay, t_{BBM}

Test Circuit 6. Enable Delay, t_{ON} (EN), t_{OFF} (EN)



Test Circuit 7. Charge Injection

Test Circuit 8. Off Isolation

Test Circuit 9. Bandwidth

Test Circuit 10. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

14-Lead TSSOP Package (RU-14)

