

Microprocessor Reset IC

Features

- Precision Monitoring of +3V, +3.3V, and +5V Power-Supply Voltages
- Fully Specified Over Temperature
- Available in Three Output Configurations
 - Push-Pull RESET Output (G696L)
 - Push-Pull RESET Output (G696H)
 - Open-Drain RESET Output (G697L)
- Externally Programmable Time Delay Generator
- 6 μ A Supply Current
- Guaranteed Reset Valid to $V_{CC} = 0.8V$
- Power Supply Transient Immunity
- 5 pin SOT23-5 Packages

Applications

- Computers
- Controllers
- Intelligent Instruments
- Critical μ P and μ C Power Monitoring
- Portable / Battery-Powered Equipment
- Automotive

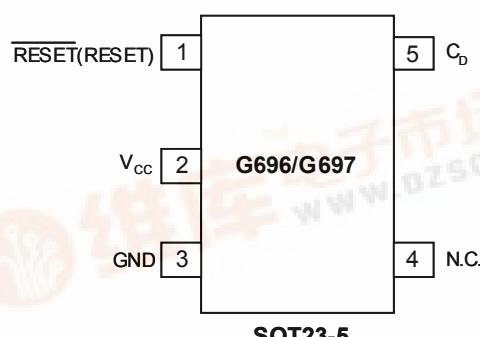
General Description

The G696/G697 are microprocessor (μ P) supervisory circuits used to monitor the power supplies in μ P and digital systems. They provide excellent circuit reliability and low cost and adjustments when used with +5V, +3.3V, +3.0V- powered circuits.

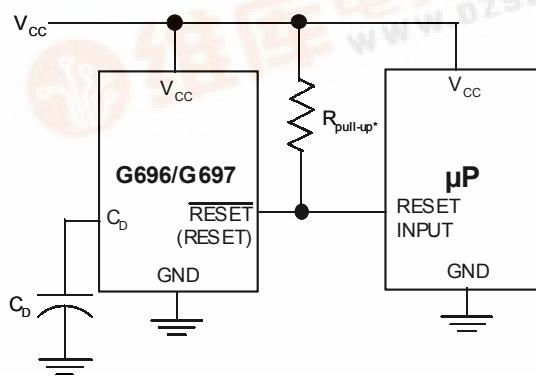
These circuits perform a single function: they assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold, with hysteresis keeping it asserted for time delay determined by externally programmable time delay generator. after V_{CC} has risen above the reset threshold. Reset thresholds suitable for operation with a variety of supply voltages are available.

The G697L has an open-drain output stage, while the G696 have push-pull outputs. The G697L's open-drain RESET output requires a pull-up resistor that can be connected to a voltage higher than V_{CC} . The G696L have an active-low RESET output, while the G696H has an active-high RESET output. The reset comparator is designed to ignore fast transients on V_{CC} , and the outputs are guaranteed to be in the correct logic state for V_{CC} down to 0.8V.

Low supply current makes the G696/G697 ideal for use in portable equipment. The G696/G697 are available in 5-pin SOT23-5 packages.


Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
G696H(L)xxxT1	-40°C ~ +105°C	SOT23-5
G697LxxxT1	-40°C ~ +105°C	SOT23-5


* xxx specifies the threshold voltage.

e.g. 263 denotes the 2.63V threshold voltage.

Pin Configuration

Typical Operating Circuit

Absolute Maximum Ratings

Terminal Voltage (with respect to GND)

 V_{CC}-0.3V to +6.0VDelay Capacitor Pin Voltage, V_{CD}-0.3 to (V_{CC} +0.3V)RESET, RESET (push-pull).....-0.3V to (V_{CC} + 0.3V)

RESET (open drain).....-0.3V to +6.0V

Input Current, V_{CC} 20mA

Output Current, RESET, RESET20mA

Continuous Power Dissipation (T_A = +70°C)

5-Pin SOT23-5 (derate 2.17mW/°C above +70°C).174mW

Operating Temperature Range-40°C to +105°C

Storage Temperature Range.....-65°C to +150°C

Lead Temperature (soldering, 10s).....+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

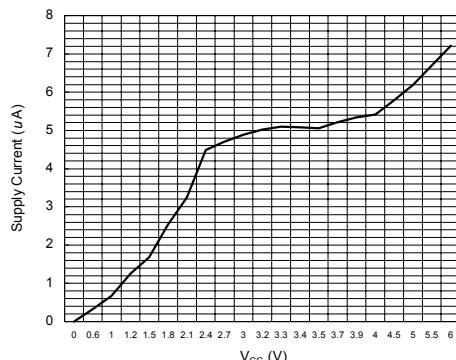
Electrical Characteristics $(V_{CC}$ = full range, T_A = -40°C to +105°C, unless otherwise noted. Typical values are at T_A = +25°C, V_{CC} = 5V for 463/438/400 versions, V_{CC} = 3.3V for 308/293 versions, and V_{CC} = 3V for 263 version.) (Note 1)

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
V_{CC} Range		T_A = 0°C +70°C	0.8		5.5	V
		T_A = -40°C +105°C	1		5.5	
Supply Current (SOT23-5)	I_{CC}	V_{CC} <5.5V, G69_463/438/400/330		6	10	μ A
		V_{CC} <3.6V, G69_308/293/263		5	8.5	
Reset Threshold	V_{TH}	G69_463	4.537	4.63	4.722	V
		G69_438	4.293	4.38	4.467	
		G69_400	3.92	4	4.08	
		G69_330	3.234	3.30	3.366	
		G69_308	3.019	3.08	3.141	
		G69_293	2.872	2.93	2.988	
		G69_263	2.578	2.63	2.682	
Reset Threshold Hysteresis	V_{HYS}	G69_463	139	231	324	mV
		G69_438	132	219	306	
		G69_400	120	200	280	
		G69_330	99	165	231	
		G69_308	93	154	215	
		G69_293	88	146	205	
		G69_263	79	131	184	
Reset Threshold Tempco				70		ppm/°C
C_D Delay Pin Threshold Voltage	V_{TDC}	V_{CC} = 5V G69_463/438/400/330	3	3.3	3.9	V
		V_{CC} = 3.3V G69_308/293	1.9	2.3	2.7	
		V_{CC} = 3.0V G69_263	1.8	2.2	2.6	
Delay Capacitor Pin Sink Current	I_{CD}	V_{CC} = 1.5V, V_{CD} = 0.5V	3	5		mA
Delay Pull up Resistance	R_D		1	1.5	2.3	MΩ

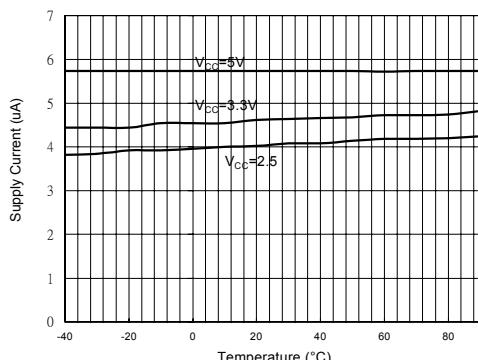
Electrical Characteristics (Continued)

(V_{CC} = full range, T_A = $-40^{\circ}C$ to $+105^{\circ}C$, unless otherwise noted. Typical values are at T_A = $+25^{\circ}C$, V_{CC} = 5V for 463/438/400/330 versions, V_{CC} = 3.3V for 308/293 versions, and V_{CC} = 3V for 263 version.) (Note 1)

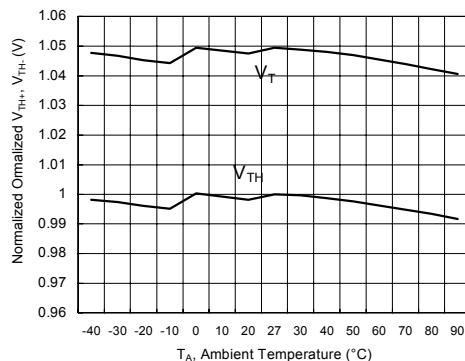
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
RESET Output Current Low (push-pull active low, and open-drain active-low, G696L and G697L)	I_{OL}	$V_{CC} = 2.5V$, $V_{RESET} = 0.5V$	8			mA
RESET Output Current High (push-pull active low, G696L)	I_{OH}	$V_{CC} = 5V$, $V_{RESET} = 4.5V$, G696L463/438/400/330	4.5			mA
		$V_{CC} = 3.3V$, $V_{RESET} = 2.8V$, G696L308/293	3			
		$V_{CC} = 3V$, $V_{RESET} = 2.5V$, G696L263	2			
RESET Output Current Low (push-pull active high, G696H)	I_{OL}	$V_{CC} = 5V$, $V_{RESET} = 0.5V$, G696H463/438/400/330	16			mA
		$V_{CC} = 3.3V$, $V_{RESET} = 0.5V$, G696H308/293	12			
		$V_{CC} = 3V$, $V_{RESET} = 0.5V$, G696H263	10			
RESET Output Current High (push-pull active high, G696H)	I_{OH}	$V_{CC} = 2.5V$, $V_{RESET} = 2V$	2			mA
RESET Open-Drain Output Leakage Current (G697L)		$V_{CC} > V_{TH}$, \overline{RESET} deasserted			1	μA


Note 1: Production testing done at T_A = $+25^{\circ}C$; limits over temperature guaranteed by design.

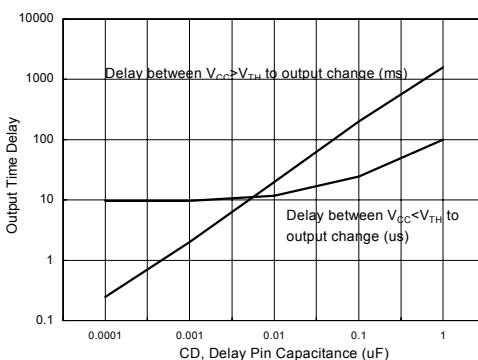
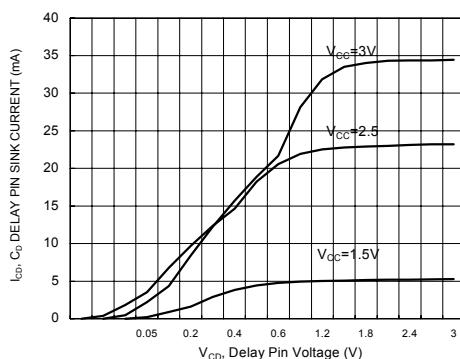
Selector Guide

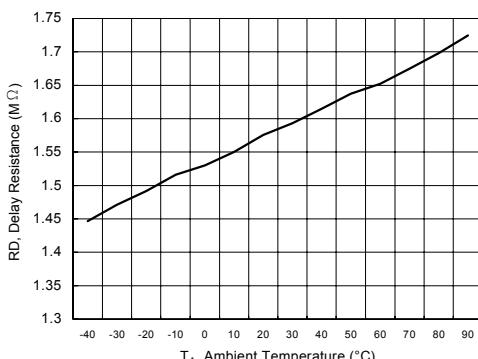

PART/SUFFIX	RESET THRESHOLD (V)	OUTPUT TYPE	TOP MARK
G697L463T_	4.63	Open-Drain RESET	697Gx
G697L438T_	4.38	Open-Drain RESET	697Fx
G697L400T_	4.00	Open-Drain RESET	697Ex
G697L330T_	3.30	Open-Drain RESET	697Dx
G697L308T_	3.08	Open-Drain RESET	697Cx
G697L293T_	2.93	Open-Drain RESET	697Bx
G697L263T_	2.63	Open-Drain RESET	697Ax
G696H463T_	4.63	Push-Pull RESET	696Lx
G696H438T_	4.38	Push-Pull RESET	696Kx
G696H400T_	4.00	Push-Pull RESET	696Jx
G696H330T_	3.30	Push-Pull RESET	696Nx
G696H308T_	3.08	Push-Pull RESET	696Ix
G696H293T_	2.93	Push-Pull RESET	696Hx
G696H263T_	2.63	Push-Pull RESET	696Gx
G696L463T_	4.63	Push-Pull RESET	696Fx
G696L438T_	4.38	Push-Pull RESET	696Ex
G696L400T_	4.00	Push-Pull RESET	696Dx
G696L330T_	3.30	Push-Pull RESET	696Mx
G696L308T_	3.08	Push-Pull RESET	696Cx
G696L293T_	2.93	Push-Pull RESET	696Bx
G696L263T_	2.63	Push-Pull RESET	696Ax

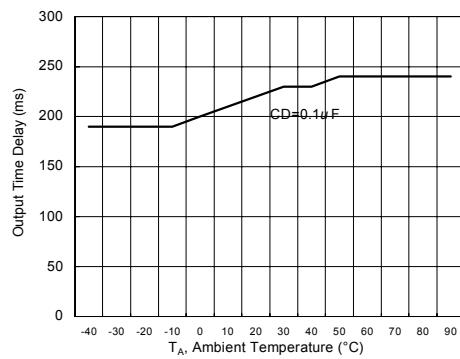
Typical Operating Characteristics


(V_{CC} = full range, $T_A = -40^{\circ}\text{C}$ to $+105^{\circ}\text{C}$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}\text{C}$, $V_{CC} = 5\text{V}$ for 463/438/400/330 versions, $V_{CC} = 3.3\text{V}$ for 308/293 versions, and $V_{CC} = 3\text{V}$ for 263 version.)

Supply Current vs. V_{CC}



Supply Current vs. Temperature (No Load)


Normalized Reset Threshold vs. Temperature


Output Time Delay vs. Capacitance

 C_D Delay Pin Sink Current vs. Voltage

Delay Resistance vs. Temperature

Reset Output Time Delay vs. Temperature

Timing Diagram

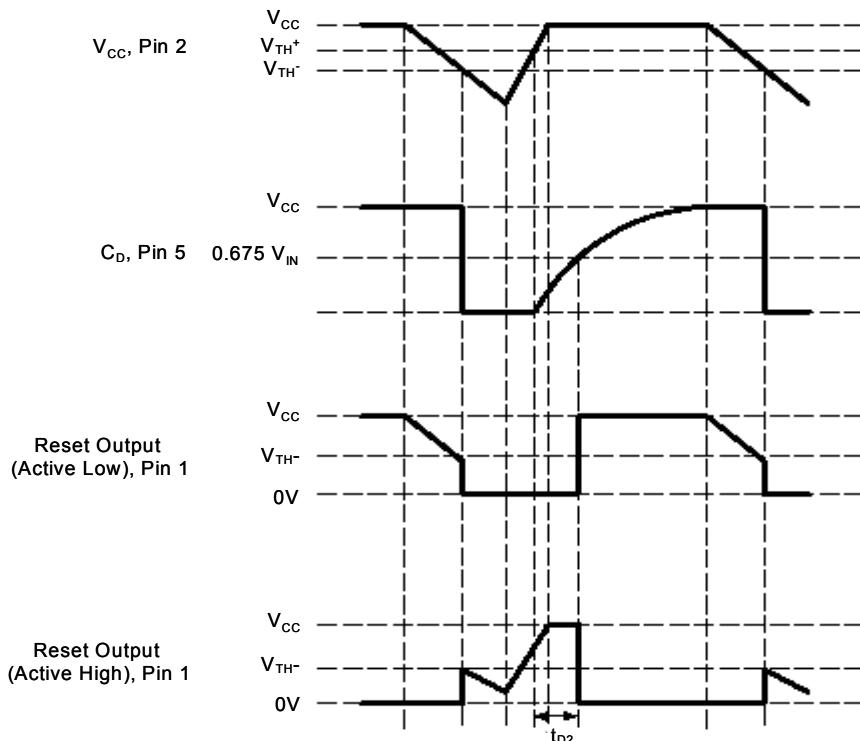


Figure 1

Functional Diagram

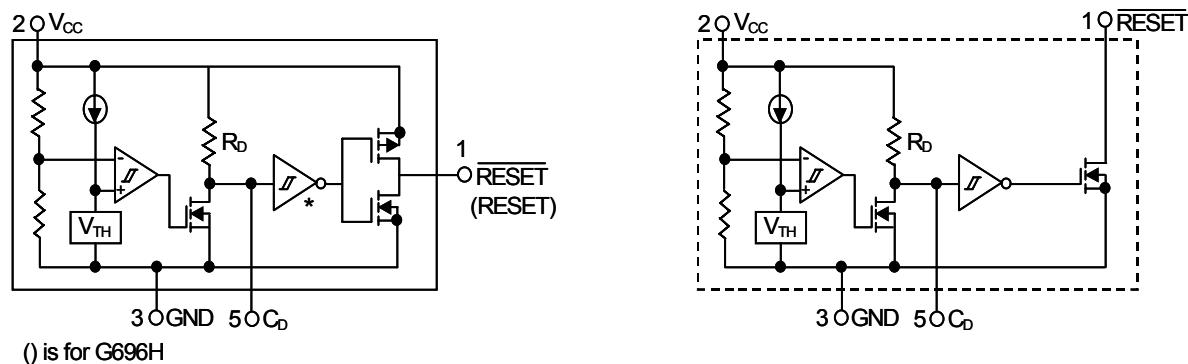


Figure 2

Pin Description

PIN	NAME	FUNCTION
1	RESET (G696L/G697L)	RESET Output remains low while V_{CC} is below the reset threshold, and for delay time set by C_D after V_{CC} rises above the reset threshold.
	RESET (G696H)	RESET Output remains high while V_{CC} is below the reset threshold, and for delay time set by C_D after V_{CC} rises above the reset threshold.
2	V_{CC}	Supply Voltage (+5V, +3.3V, +3.0V)
3	GND	Ground
4	N.C.	No Connection.
5	C_D	External Programmable time delay is set by the capacitor connect to C_D pin.

Detailed Description

A microprocessor's (μ P's) reset input starts the μ P in a known state. The G697L/G696L/G696H assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions. They assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold (V_{TH-}), keeping it asserted for time delay set by capacitor connected to C_D pin, after V_{CC} has risen above the high reset threshold V_{TH+} ($V_{TH-}+V_{HYS}$). The G697L uses an open-drain output, and the G696L/G696H have a push-pull output stage.

Connect a pull-up resistor on the G697L's RESET output to any supply between 0 and 5.5V.

The time delay is set by external capacitor C_D , and internal pull up resistor R_D . When the voltage at C_D pin exceeds the buffer threshold, typically 0.675 V_{CC} , the RESET output high (RESET output low). The voltage detector and buffer have built-in hysteresis to prevent erratic reset operation. The formula of time delay is T (ms) $\cong 1685 C_D$ (μ F). Fig1 and Fig2 show a timing diagram and a Functional Block.

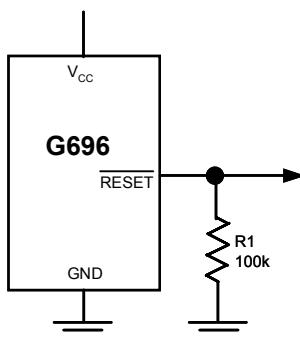


Figure 3. RESET Valid to V_{CC} = Ground Circuit

Ensuring a Valid Reset Output Down to $V_{CC} = 0$

When V_{CC} falls below 0.8V, the G696 RESET output no longer sinks current—it becomes an open circuit. Therefore, high-impedance CMOS logic inputs connected to RESET can drift to undetermined voltages. This presents no problem in most applications since most μ P and other circuitry is inoperative with V_{CC} below 0.8V. However, in applications where RESET

must be valid down to 0V, adding a pull-down resistor to RESET causes any stray leakage currents to flow to ground, holding RESET low (Figure 4). R_1 's value is not critical; 100k Ω is large enough not to load RESET and small enough to pull RESET to ground.

A 100k Ω pull-up resistor to V_{CC} is also recommended for the G697L if RESET is required to remain valid for $V_{CC} < 0.8V$.

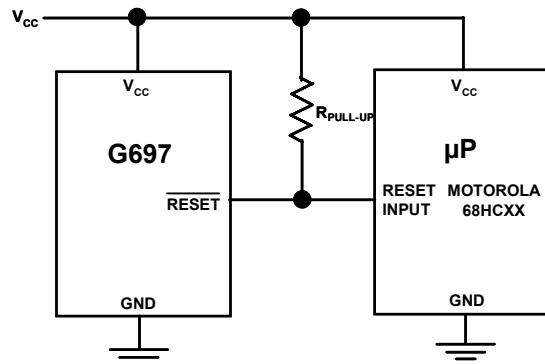


Figure 4. Interfacing to μ Ps with Bidirectional Reset I/O

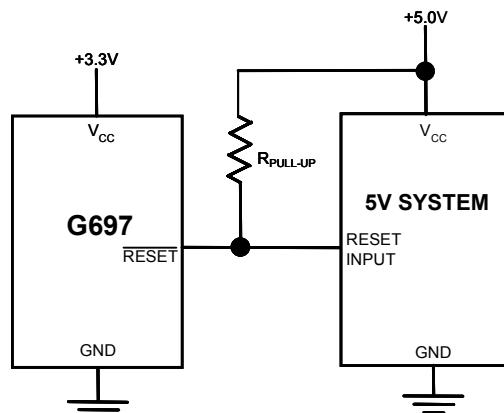


Figure 5. G697L Open-Drain RESET Output Allows Use with Multiple Supplies

Interfacing to μ Ps with Bidirectional Reset Pins

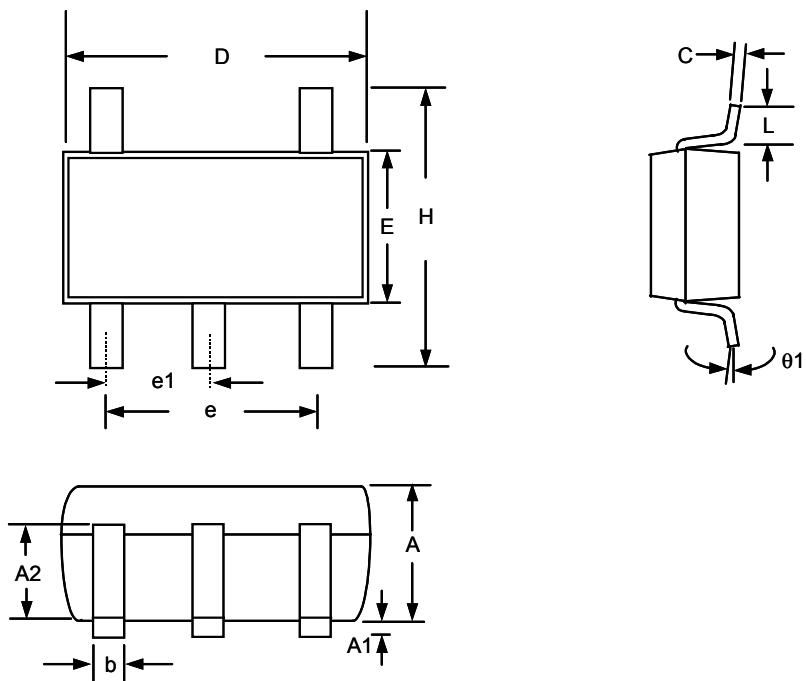
Since the $\overline{\text{RESET}}$ output on the G697L is open drain, this device interfaces easily with μ Ps that have bidirectional reset pins, such as the Motorola 68HC11. Connecting the μ P supervisor's $\overline{\text{RESET}}$ output directly to the microcontroller's (μ C's) $\overline{\text{RESET}}$ pin with a single pull-up resistor allows either device to assert reset (Figure 5).

G697L Open-Drain $\overline{\text{RESET}}$ Output Allows Use with Multiple Supplies

Generally, the pull-up connected to the G697L will connect to the supply voltage that is being monitored at the IC's V_{CC} pin. However, some systems may use the open-drain output to level-shift from the monitored supply to reset circuitry powered by some other supply (Figure 6). Note that as the G697L's V_{CC} decreases below 1V, so does the IC's ability to sink current at $\overline{\text{RESET}}$. Also, with any pull-up, $\overline{\text{RESET}}$ will be pulled

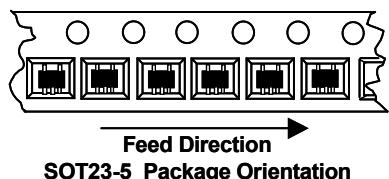
high as V_{CC} decays toward 0. The voltage where this occurs depends on the pull-up resistor value and the voltage to which it is connected.

Benefits of Highly Accurate Reset Threshold


Most μ P supervisor ICs have reset threshold voltages between 5% and 10% below the value of nominal supply voltages. This ensures a reset will not occur within 5% of the nominal supply, but will occur when the supply is 10% below nominal.

When using ICs rated at only the nominal supply $\pm 5\%$, this leaves a zone of uncertainty where the supply is between 5% and 10% low, and where the reset may or may not be asserted.

The G69_463/G69_308 use highly accurate circuitry to ensure that reset is asserted close to the 5% limit, and long before the supply has declined to 10% below nominal.



Package Information

Note:

1. Package body sizes exclude mold flash protrusions or gate burrs
2. Tolerance ± 0.1000 mm (4mil) unless otherwise specified
3. Coplanarity: 0.1000mm
4. Dimension L is measured in gage plane

SYMBOLS	DIMENSIONS IN MILLIMETERS		
	MIN	NOM	MAX
A	1.00	1.10	1.30
A1	0.00	-----	0.10
A2	0.70	0.80	0.90
b	0.35	0.40	0.50
C	0.10	0.15	0.25
D	2.70	2.90	3.10
E	1.40	1.60	1.80
e	-----	1.90(TYP)	-----
e1	-----	0.95	-----
H	2.60	2.80	3.00
L	0.37	-----	-----
theta 1	1°	5°	9°

Taping Specification