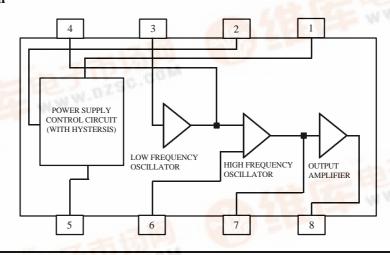
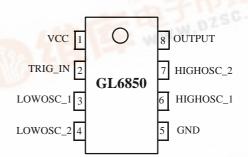
GL6850

GL6850 TWO TONE RINGER

Description


The GL6850 tone ringer is a monolithic device, which incorporates two oscillators, and output amplifier and a power supply control circuit. The oscillator frequencies can be adjusted over a wide range by selection of external components. One oscillator, normally operated at a low frequency, causes the second oscillator to alternate between its nominal frequency and a related higher frequency. The resulting output is a distinct warbling tone. The output amplifier will drive either a transformer coupled loudspeaker or a piezo-ceramic transducer.

The device can be powered from a telephone line or a fixed d.c. supply. The power control circuit has built-in hysteresis to prevent false triggering and rotary dial chirps. The GL6850 can be triggered externally under logic control.


Features

- Low current consumption.
- Designed for telephone bell replacement.
- Small size MINIDIP package.
- Adjustable 2- frequency tone.
- Built-in hysteresis prevents false triggering and rotary dial CHIRPS.
- Alarms or other alerting devices.
- External triggering or ringer disable.
- Include ESD protection.

Block Diagram

Pin Configuration

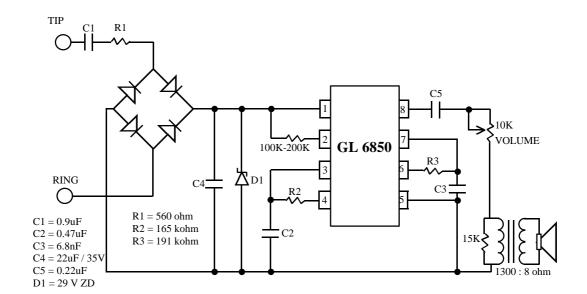
Absolute Maximum Ratings (Ta = 25; É

CHARACTERISTICS	SYMBOL	VALUE	UNIT
Supply Voltage	V_{CC}	30	V
Power Dissipation	Po	400	mW
Operating Temperature	Topr	-25 to 65	įÉ
Storage Temperature	Tstg	-65 to 150	É
			•

Electrical Characteristics (Ta = 25; É

CVAIDOI	THE COMPLETION) (T) I	TEXTD.	3.6.37	LINITE
SYMBOL	TEST CONDITION	MIIN	TYP	MAX	UNIT
V_{CC}		-	-	29.0	V
V_{SI}		17	19	21	V
I_{SI}		0.9	2.0	3.7	mA
V_{SUS}		9.7	11.0	12.0	V
I_{SUS}		0.4	1.0	2.0	mA
V_{TR}	$V_{CC} = 15 \text{ V}$	9.5	ı	-	V
I_{TR}	$V_{CC} = 15 \text{ V}$	40	-	1000^{5}	μA
$V_{ m DIS}$	$V_{CC} = 21 \text{ V}$	-	-	0.8	V
I_{DIS}	$V_{CC} = 21 \text{ V}$	-50	ı	-	μA
V _{OH}	V _{CC} =21V, I ₈ =-10mA Pin6 =6V,Pin7=GND	17	19	21	V
V _{OL}	V _{CC} =21V, I ₈ = -10mA Pin6= GND,Pin7=6V	1	1	2	V
f_{H1}					
$ m f_{H2}$ $ m f_{L}$	R3=191K, C3=6800Pf R3=191K, C3=6800pF R2=165K, C2=0.47µF	461 576 9.0	461 640 10	563 704 11.0	Hz Hz Hz
	$\begin{array}{c c} V_{SI} & \\ I_{SI} & \\ V_{SUS} & \\ I_{SUS} & \\ V_{TR} & \\ I_{TR} & \\ V_{DIS} & \\ I_{DIS} & \\ V_{OH} & \\ \end{array}$	$\begin{array}{c c} V_{CC} \\ V_{SI} \\ \hline \\ I_{SI} \\ \hline \\ V_{SUS} \\ \hline \\ I_{SUS} \\ \hline \\ V_{TR} \\ \hline \\ V_{CC} = 15 \text{ V} \\ \hline \\ V_{DIS} \\ \hline \\ V_{CC} = 21 \text{ V} \\ \hline \\ V_{OH} \\ \hline \\ V_{OH} \\ \hline \\ V_{CC} = 21 \text{ V} \\ \hline \\ V_{OH} \\ \hline \\ V_{CC} = 21 \text{ V}, I_8 = -10 \text{mA} \\ \hline \\ Pin6 = 6 \text{ V}, Pin7 = G \text{ ND} \\ \hline \\ V_{OL} \\ \hline \\ V_{DL} \\ \hline \\ V_{CC} = 21 \text{ V}, I_8 = -10 \text{ mA} \\ \hline \\ Pin6 = G \text{ ND}, Pin7 = 6 \text{ V} \\ \hline \\ f_{H1} \\ \hline \\ f_{H2} \\ \hline \\ R3 = 191 \text{ K}, C3 = 6800 \text{ Pf} \\ R3 = 191 \text{ K},$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

NOTE


- Initial supply voltage (V_{SI}) is the supply voltage required to start the tone ringer oscillation.

- Sustaining voltage (V_{SUS}) in the supply voltage required to maintain oscillation.
 V_{TR} and I_{TR} are the conditions applied to trigger to start for V_{SUS}; \$\hat{V}_{CC}\$; \$\hat{V}_{SI}\$
 V_{DIS} and I_{DIS} are the conditions applied to trigger to inhibit oscillation for V_{SI}; \$\hat{A}_{VCC}\$
 Trigger current must be limited to this value externally.

PIN DESCRIPTION

PIN NUMBER	PIN FUNCTION	DESCRIPTION
PIN 1	VCC	Operating supply D.C. voltage rectified from ringing signal.
PIN2	TRIG_IN	Oscillator External Trigger/Inhibit pin (must beconnected through a current limiting resistor, which is used to program the slope of supply current vs voltage.)
PIN3	LOWOSC_1	Low Frequency Time Constant Adjustment pins f _L is controlled
PIN 4	LOWOSC_2	externally by R_2 and C_2 $f_L = 1/1.289 R_2 C_2 \label{eq:fL}$
PIN 5	GND	Ground
PIN 6	HIGHOSC_1	High Frequency Time Constant Adjustment Pins f _{H1} and f _{H2} are
PIN 7	HIGHOSC_2	controlled externally by R_3 and C_3 . $f_{H1}{=}1/1.504R_3C_3, f_{H2}{=}1/1.203R_3C_3$
PIN 8	OUTPUT	Tone output

APPLICATON CIRCUIT

