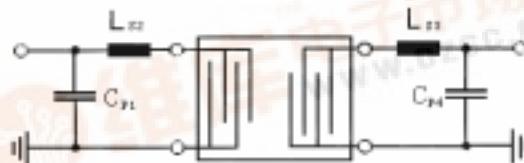


The GW5329 is a low - loss, compact, and economical surface-acoustic-wave (SAW) filter designed to provide front - end selectivity in 429.82 MHz receivers.

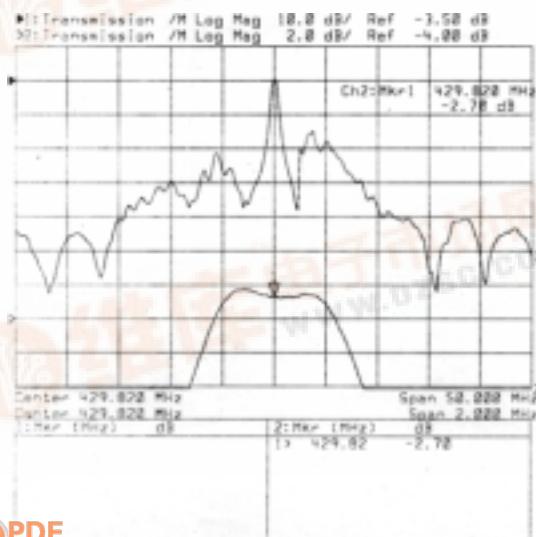
1. Package Dimension (QCC8C)

Pin	Connection
1	Input Ground
2	Input
5	Output Ground
6	Output
3, 7	To be Grounded
4, 8	Case Ground


Sign	Data (unit: mm)	Sign	Data(unit:mm)
A	2.08	E	1.2
B	0.6	F	1.35
C	1.27	G	5.0
D	2.54	H	5.0

2. Marking

GW5329


Color: Black or Blue

3. Matching Circuit to 50 Ω

Cp1 = 8.2pF, Ls2 = 60nH*, Ls3 = 60nH*, Cp4 = 8.2pF

4. Typical Filter Response

5. Performance**5-1. Maximum Rating**

Rating	Value	Units
Input Power Level	10	dBm
DC Voltage	12V	VDC
Storage Temperature	-40 to +85	°C

5-2. Electronic Characteristics

Characteristic		Min.	Typ.	Max.	Units
Center Frequency (center frequency between 3dB points)	f_c		429.82		MHz
Insertion Loss	I_L	--	3.5	5.0	dB
3dB Passband	BW_3		600		kHz
Rejection	at f_c -21.4MHz(Image)	40	50	--	dB
	at f_c -10.7MHz(LO)	15	30	--	
	Ultimate	--	80	--	
Temperature	Operating Case Temperature	T_c	-35	+85	°C
	Turnover Temperature	T_o	24	39	
	Turnover Frequency	f_o		f_c	MHz
	Frequency Temperature Coefficient	FTC		0.032	ppm/°C ²
Frequency Aging Absolute Value during the First Year		$ f_A $		10	ppm/yr

NOTES:

- Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture which is connected to a 50 ohms test system with $VSWR \leq 1.2:1$. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_c . Note that insertion loss and bandwidth and passband shape are dependent on the impedance matching component values and quality.
- The frequency f_c is defined as the midpoint between the 3dB frequencies.
- Where noted specifications apply over the entire specified operating temperature range.
- The turnover temperature, T_o , is the temperature of maximum (or turnover) frequency, f_o . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_o [1 - FTC (T_o - T_c)]^2$.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- The design, manufacturing process, and specifications of this device are subject to change without notice.
- All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.