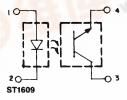


H22A4/5/6

PACKAGE DIMENSIONS



SYMBOL	MILLIMETERS		INC	NOTES	
	MIN.	MAX.	MIN.	MAX.	10120
Α	10.7	11.0	.422	.433	
Α,	3.0	3.2	.119	.125	
®b	.600	.750	.024	.030	2
b,	.50 NOM.		.020 NOM.		2
D,	11.6	12.0	.457	.472	
D ₂	3.0	3.3	.119	.129	
e,	6.9	7.5	.272	.295	
e ₂	2.3	2.8	.091	.110	
E	6.15	6.35	.243	.249	
L	8.00		.315		
S	.85	1.0	.034	.039	
S,	3.45	3.75	.136	.147	
T	2.6 N	IOM.	.103	3	

NOTES

- 1. INCH DIMENSIONS ARE DERIVED FROM MILLIMETERS.
- FOUR LEADS. LEAD CROSS SECTION IS CONTROLLED BETWEEN 1.27mm (.050") FROM SEATING PLANE AND THE END OF THE LEADS.
- 3. THE SENSING AREA IS DEFINED BY THE "S" DIMENSION AND BY DIMENSION "T" ±0.75mm (±.030 INCH).

PACKAGE OUTLINE

DESCRIPTION

The H22A Slotted Optical Switch is a gallium arsenide light emitting diode coupled to a silicon photodarlington in a plastic housing. The packaging system is designed to optimize the mechanical resolution, coupling efficiency, ambient light rejection, cost and reliability. The gap in the housing provides a means of interrupting the signal with an opaque material, switching the output from an "ON" to an "OFF" state.

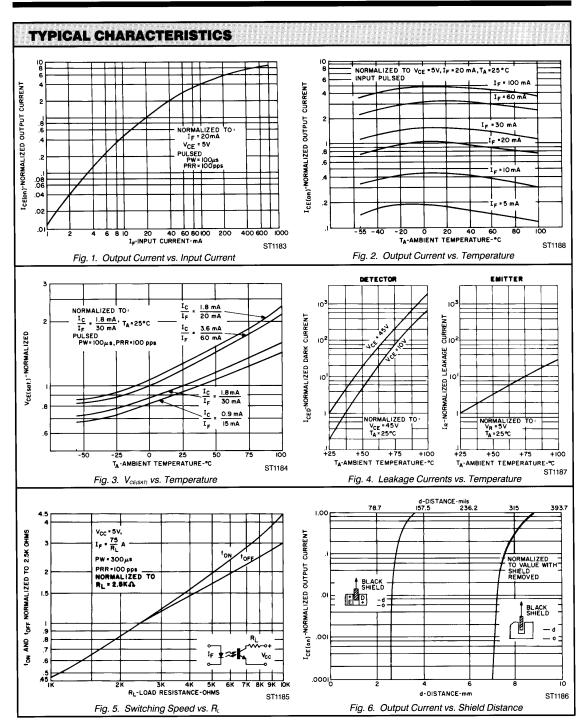
FEATURES

WW.DZSC.COM

- Opaque housing
- Low cost
- .035" apertures
- High I_{C(ON)}

Storage Temperature	
Operating Temperature	–55°C to +100°C
Soldering: Lead Temperature (Iron) Lead Temperature (Flow)	
NPUT DIODE	
Continuous Forward Current	60 m/
Reverse Voltage	
Power Dissipation	100 mW
OUTPUT TRANSISTOR	
Collector-Emitter Voltage	55 Volt
Emitter-Collector Voltage	
Power Dissipation	150 mW

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
	31111001	191114.		WAA.	01113	TEST CONDITIONS
INPUT DIODE						
Forward Voltage	$V_{\scriptscriptstyle F}$	_		1.7	V	$I_F = 60 \text{ mA}$
Reverse Breakdown Voltage	V_{R}	6.0		_	٧	$I_R = 10 \mu A$
Reverse Leakage Current	I _R	_		1.0	μΑ	V _R = 3 V
OUTPUT TRANSISTOR						
Emitter-Collector Breakdown	BV_{ECO}	6			V	$I_E = 100 \ \mu A$, $Ee = 0$
Collector-Emitter Breakdown	BV _{CEO}	55		_	٧	I _c = 1 mA, Ee = 0
Collector-Emitter Leakage	I _{CEO}	_		100	nA	V _{CE} = 45 V, Ee = 0
COUPLED						
On-State Collector Current	I _{C(ON)}		See page 3.		mA	
Saturation Voltage	$V_{ce(SAT)}$		See page 3.		٧	
Turn-On Time	t _{on}		See page 3.		μS	
Turn-Off Time	t _{off}		See page 3.		μS	


NOTES

- 1. Derate power dissipation linearly 1.33 mW/°C above 25°C. 2. Derate power dissipation linearly 2.00 mW/°C above 25°C.
- 3. RMA flux is recommended.
- Methanol or Isopropyl alcohols are recommended as cleaning agents.
 Soldering iron tip 1/6" (1.6 mm) from housing.

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
ON-STATE COLLECTOR	CURRENT					
H22A4	I _{C(ON)}	0.15	_	_	mA	$I_F = 5mA$, $V_{CE} = 5V$
H22A5	I _{C(ON)}	0.30	_	_	mA	$I_F = 5mA$, $V_{CE} = 5V$
H22A6	I _{C(ON)}	0.60			mA	$I_{\scriptscriptstyle F}=5\text{mA},V_{\scriptscriptstyle CE}=5V$
H22A4	I _{C(ON)}	1.0		_	mA	$I_F = 20$ mA, $V_{CE} = 5$ V
H22A5	I _{C(ON)}	2.0	_		mA	$I_F = 20 \text{mA}, V_{CE} = 5 \text{V}$
H22A6	(C(ON)	4.0			mA	$I_{\scriptscriptstyle F}=20mA,V_{\scriptscriptstyle CE}=5V$
H22A4	I _{C(ON)}	1.9			mA	$I_F = 30\text{mA}, V_{CE} = 5\text{V}$
H22A5	I _{C(ON)}	3.0		_	mA	$I_F = 30$ mA, $V_{CE} = 5$ V
H22A6	I _{C(ON)}	5.5			mA	$I_F = 30\text{mA}, V_{CE} = 5V$
SATURATION VOLTAGE			701			
H22A5	$V_{\text{CE(SAT)}}$		_	0.40	٧	$I_F = 20 \text{mA}, I_C = 1.8 \text{mA}$
H22A6	V _{CE(SAT)}			0.40	٧	$I_F = 20mA, I_C = 1.8mA$
H22A4	V _{CE(SAT)}	_		0.40	. V	I _F = 30mA, I _C = 1.8mA
Turn-On Time	t _{on}		8	_	μS	$V_{cc} = 5V$, $I_F = 30$ mA, $R_L = 2.5$ K
Turn-Off Time	t _{off}	_	50	_	μS	$V_{cc} = 5V$, $I_F = 30$ mA, $R_I = 2.5$ K

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.