PECL／TTL－TTL 1：8 Clock Distribution Chip

The MC10H／100H646 is a single supply，low skew translating 1：8 clock driver．Devices in the Motorola H600 translator series utilize the 28－lead PLCC for optimal power pinning，signal flow through and electrical performance．The single supply H646 is similar to the H643，which is a dual supply $1: 8$ version of the same function．
－PECL／TTL－TTL Version of Popular ECLinPSTM E111
－Low Skew
－Guaranteed Skew Spec
－Tri－State Enable
－Differential Internal Design
－VBB Output
－Single Supply
－Extra TTL and ECL Power／Ground Pins
－Matched High and Low Output Impedance
－Meets Specifications Required to Drive the Pentium ${ }^{\text {TM }}$ Microprocessor

The H646 was designed specifically to drive series terminated transmission lines．Special techniques were used to match the HIGH and LOW output impedances to about 7ohms．This simplifies the choice of the termination resistor for series terminated applications．To match the HIGH and LOW output impedances，it was necessary to remove the standard IOS limiting resistor．As a result，the user should take care in preventing an output short to ground as the part will be permanently damaged．

The H646 device meets all of the requirements for driving the 60 and 66 MHz Pentium Microprocessor．The device has no PLL components，which greatly simplifies its implementation into a digital design．The eight copies of the clock allows for point－to－point clock distribution to simplify board layout and optimize signal integrity．

The H646 provides differential PECL inputs for picking up LOW skew PECL clocks from the backplane and distributing it to TTL loads on a daughter board．When used in conjunction with the MC10／100E111，very low skew，very wide clock trees can be designed．In addition，a TTL level clock input is provided for flexibility．Note that only one of the inputs can be used on a single chip．For correct operation，the unused input pins should be left open．

The Output Enable pin forces the outputs into a high impedance state when a logic 0 is applied．
The output buffers of the H646 can drive two series terminated， 50Ω transmission lines each．This capability allows the H 646 to drive up to 16 different point－to－point clock loads．Refer to the Applications section for a more detailed discussion in this area．

The 10 H version is compatible with MECL $10 \mathrm{H}^{\mathrm{TM}}$ ECL logic levels．The 100 H version is compatible with 100 K levels．

MECL 10 H and ECLinPS are trademarks of Motorola，Inc．Pentium is a trademark of Intel Corporation．

PIN NAMES

PIN	FUNCTION
OGND	TTL Output Ground (0V)
OVT	TTL Output $\mathrm{V}_{\mathrm{CC}}(+5.0 \mathrm{~V})$
IGND	Internal TTL GND (0V)
IVT	Internal TTL $\mathrm{V}_{\text {CC }}(+5.0 \mathrm{~V})$
$V_{\text {EE }}$	ECL $\mathrm{V}_{\mathrm{EE}}(0 \mathrm{~V})$
$V_{\text {CCE }}$	ECL Ground (5.0V)
ECLK, ECLK	Differential Signal Input (PECL)
V_{BB}	$\mathrm{V}_{\text {BB }}$ Reference Output
Q0-Q7	Signal Outputs (TTL)
EN	Tri-State Enable Input (TTL)

Figure 1. Output Structure

Figure 2. Power versus Frequency (Typical)

TRUTH TABLE

TCLK	ECLK	ECLK	EN	Q
GND	L	H	H	L
GND	H	L	H	H
H	GND	GND	H	H
L	GND	GND	H	L
X	X	X	L	Z

L = Low Voltage Level; H = High Voltage Level; Z = Tristate

DC CHARACTERISTICS (IVT $=$ OVT $=$ VCCE $=5.0 \mathrm{~V} \pm 5 \%$)

Symbol	Characteristic	$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
V_{OH}	Output HIGH Voltage	2.6	-	2.6	-	2.6	-	V	$\mathrm{IOH}=24 \mathrm{~mA}$
VOL	Output LOW Voltage	-	0.5	-	0.5	-	0.5	V	$\mathrm{IOL}=48 \mathrm{~mA}$
IOS	Output Short Circuit Current	-	-	-	-	-	-	mA	See Note 1

1. The outputs must not be shorted to ground, as this will result in permanent damage to the device. The high drive outputs of this device do not include a limiting IOS resistor.

TTL DC CHARACTERISTICS (VT = VE = 5.0 V $\pm 5 \%$)

Symbol	Characteristic	$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input HIGH Voltage Input LOW Voltage	2.0	0.8	2.0	0.8	2.0	0.8	V	
IIH	Input HIGH Current		$\begin{gathered} 20 \\ 100 \end{gathered}$		$\begin{gathered} 20 \\ 100 \end{gathered}$		$\begin{gathered} 20 \\ 100 \end{gathered}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=7.0 \mathrm{~V} \end{aligned}$
IIL	Input LOW Current		-0.6		-0.6		-0.6	mA	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$		V	$\begin{aligned} & \mathrm{IOH}=-3.0 \mathrm{~mA} \\ & \mathrm{IOH}=-24 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage		0.5		0.5		0.5	V	$\mathrm{l} \mathrm{OL}=24 \mathrm{~mA}$
$\mathrm{V}_{\text {IK }}$	Input Clamp Voltage		-1.2		-1.2		-1.2	V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
los	Output Short Circuit Current	-100	-225	-100	-225	-100	-225	mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

10H PECL DC CHARACTERISTICS (IVT = OVT $=$ VCCE $=5.0 \mathrm{~V} \pm 5 \%$)

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit	Notes
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
I_{IH}	Input HIGH Current			225			175			175	$\mu \mathrm{A}$	
IIL	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$	
V_{IH}	Input HIGH Voltage	3.83		4.16	3.87		4.19	3.94		4.28	V	$\begin{aligned} & \text { IVT }=\mathrm{IVO}= \\ & \mathrm{VCCE}=5.0 \mathrm{~V} \end{aligned}$
VIL	Input LOW Voltage	3.05		3.52	3.05		3.52	3.05		3.555	V	$\begin{aligned} & \mathrm{IVT}=\mathrm{IVO}= \\ & \mathrm{VCCE}=5.0 \mathrm{~V}(\mathbf{1}) \end{aligned}$
V_{BB}	Output Reference Voltage	3.62		3.73	3.65		3.75	3.69		3.81	V	$\begin{aligned} & \text { IVT }=\mathrm{IVO}= \\ & \mathrm{VCCE}=5.0 \mathrm{~V} \end{aligned}$

100H PECL DC CHARACTERISTICS (IVT = OVT = VCCE $=5.0 \mathrm{~V} \pm 5 \%$)

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit	Notes
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max		
l_{IH}	Input HIGH Current			225			175			175	$\mu \mathrm{A}$	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	3.835		4.12	3.835		4.12	3.835		3.835	V	$\begin{aligned} & \mathrm{IVT}=\mathrm{IVO}= \\ & \mathrm{VCCE}=5.0 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	3.19		3.525	3.19		3.525	3.19		3.525	V	$\begin{aligned} & \mathrm{IVT}=\mathrm{IVO}= \\ & \mathrm{VCCE}=5.0 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {BB }}$	Output Reference Voltage	3.62		3.74	3.62		3.74	3.62		3.74	V	$\begin{aligned} & \mathrm{IVT}=\mathrm{IVO}= \\ & \mathrm{VCCE}=5.0 \mathrm{~V}(1) \end{aligned}$

[^0]DC CHARACTERISTICS (IVT $=$ OVT $=$ VCCE $=5.0 \mathrm{~V} \pm 5 \%$)

Symbol	Characteristic	$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Typ	Max	Min	Max		
${ }^{\text {I CCL }}$	Power Supply Current		185		166	185		185	mA	Total all OVT, IVT, and VCCE pins
${ }^{\text {ICCH }}$			175		154	175		175	mA	
${ }^{\text {I CCZ }}$			210			210		210		

AC CHARACTERISTICS (IVT $=$ OVT $=$ VCCE $=5.0 \mathrm{~V} \pm 5 \%$)

Symbol	Characteristic		$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$		Unit	Condition
			Min	Max	Min	Max	Min	Max		
tPLH	Propagation Delay	ECLK to Q TCLK to Q	$\begin{aligned} & \hline 4.8 \\ & 5.1 \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & 6.4 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 5.3 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6 . \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 7.0 \end{aligned}$	ns	
tPHL	Propagation Delay	ECLK to Q TCLK to Q	$\begin{aligned} & 4.4 \\ & 47 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 6.5 \end{aligned}$	ns	
tSK(0)	Output Skew	$\begin{array}{r} \text { Q0, Q3, Q4, Q7 } \\ \text { Q1, Q2, Q5 } \\ \text { Q0-Q7 } \end{array}$		$\begin{aligned} & 350 \\ & 350 \\ & 500 \end{aligned}$		$\begin{aligned} & 350 \\ & 350 \\ & 500 \end{aligned}$		$\begin{aligned} & 350 \\ & 350 \\ & 500 \end{aligned}$	ps	Note 1, 6
tsk(PR)	Process Skew	ECLK to Q TCLK to Q		$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.1 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	ns	Note 2, 6
tSK(P)	Pulse Skew	Δ tPLH - tphL		1.0		1.0		1.0	ns	
$\mathrm{t}_{\mathrm{r}, \mathrm{t}} \mathrm{t}_{\mathrm{f}}$	Rise/Fall Time		0.3	1.5	0.3	1.5	0.3	1.5	ns	
tPW	Output Pulse Width	$\begin{aligned} & 66 \mathrm{MHz} @ 2.0 \mathrm{~V} \\ & 66 \mathrm{MHz} @ 0.8 \mathrm{~V} \\ & 60 \mathrm{MHz} @ 2.0 \mathrm{~V} \\ & 60 \mathrm{MHz} @ 0.8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \\ & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & \hline 5.5 \\ & 5.5 \\ & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \\ & 6.0 \\ & 6.0 \end{aligned}$		ns	Note 3, 6
${ }^{\text {tstability }}$	Clock Stability			± 75		± 75		± 75	ps	Note 4, 6
$\mathrm{F}_{\text {MAX }}$	Maximum Input Freq			80		80		80	MHz	Note 5, 6

1. Output skew defined for identical output transitions.
2. Process skew is valid for $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V} \pm 5 \%$.
3. Parameters guaranteed by $\mathrm{t}_{\mathrm{SK}}(\mathrm{P})$ and t_{r}, t_{f} specification limits.
4. Clock stability is the period variation between two successive rising edges.
5. For series terminated lines. See Applications section for FMAX enhancement techniques.
6. All AC specifications tested driving 50Ω series terminated transmission lines at 80 MHz .

OUTLINE DIMENSIONS

FN SUFFIX
PLASTIC PLCC PACKAGE
CASE 776-02
ISSUE D

VIEW D-D

θ	$0.010(0.250)(\mathrm{S}$	T	L-M (S)	N (S)

VIEW S

NOTES:

1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.
3. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
5. CONTROLLING DIMENSION: INCH.
6. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR
PROTRUSION(S) SHALL NOT CAUSE THE H PROTRUSION(S) SHALL NOT CAUSE THE H
DIMENSION TO BE GREATER THAN 0.037 DIMENSION TO BE GREATER THAN 0.037
(0.940). THE DAMBAR INTRUSION(S) SHALL (0.940). THE DAMBAR INTRUSION(S) SH
NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.485	0.495	12.32	12.57
B	0.485	0.495	12.32	12.57
C	0.165	0.180	4.20	4.57
E	0.090	0.110	2.29	2.79
F	0.013	0.019	0.33	0.48
G	0.050 BSC	1.27 BSC		
H	0.026	0.032	0.66	0.81
J	0.020	-	0.51	-
K	0.025	-	0.64	-
R	0.450	0.456	11.43	11.58
U	0.450	0.456	11.43	11.58
V	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
X	0.042	0.056	1.07	1.42
Y	-	0.020	-	0.50
Z	2°	10°	2°	10°
G1	0.410	0.430	10.42	10.92
K1	0.040	-	1.02	-

Abstract

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and \mathbb{M}) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equa Opportunity/Affirmative Action Employer

How to reach us:
USA/EUROPE/ Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405; Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

Mfax $^{\text {TM }: ~ R M F A X 0 @ e m a i l . s p s . m o t . c o m ~-~ T O U C H T O N E ~ 602-244-6609 ~}$ INTERNET: http://www.mot.com/sps/

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

[^0]: 1. $E C L V_{I H}, V_{I L}$ and $V_{B B}$ are referenced to VCCE and will vary $1: 1$ with the power supply. The levels shown are for $\operatorname{IVT}=\mathrm{IVO}=\mathrm{VCCE}=5.0 \mathrm{~V}$
