# intersil

OBSOLETE PRODUCT
POSSIBLE SUBSTITUTE PRODUCT
HA-5104/883 or 5962-8850201

捷多邦,专业PCB打样工厂,24小时加急出货 HA-5134/883

July 2001

# **Precision Quad Operational Amplifier**

### **Features**

- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Low Offset Voltage (+25°C)......200μV (Max) (Full Temp.).....350μV (Max)
- Low Offset Voltage Drift at Temp......2μV/°C (Max)

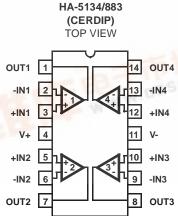
- High CMRR/PSRR ......100dB (Min)
- High Voltage Gain . . . . . . . . . . . 800kV/V (Min)
- Dielectric Isolation

## **Applications**

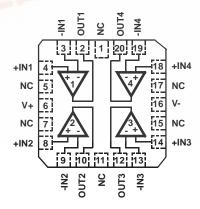
- Instrumentation Amplifiers
- State-Variable Filters
- · Precision Integrators
- Threshold Detectors
- Precision Data Acquisition Systems
- Low-Level Transducer Amplifiers

### Description

The HA-5134/883 is a precision quad operational amplifier that is pin compatible with the OP-400, LT1014, OP11, RM4156, and LM148 as well as the HA-4741/883. Each amplifier features guaranteed maximum values for offset voltage of  $350\mu\text{V}$ , offset voltage drift of  $2\mu\text{V}/^{\text{O}}\text{C}$  (max), and offset current of 75nA over the full military temperature range while CMRR/PSRR is guaranteed greater than 94dB and open loop gain is guaranteed above 500kV/V from -55°C to +125°C. Room temperature specifications exceed these values such as an offset voltage matching specification between channels of 200 $\mu\text{V}$  (max) at +25°C.


Precision performance of the HA-5134/883 is enhanced by a noise voltage density of 7nV/√Hz at 1kHz (typ), noise current density of 2pA/√Hz at 1kHz and channel separation of 120dB (min). Each of the four unity gain stable amps on the quad are electrically isolated, having only supply lines in common and are fabricated using Dielectric Isolation to insure quality performance in the most demanding applications.

The HA-5134/883 is ideal for compact circuits such as instrumentation amplifiers, state-variable filters, and low level transducer amplifiers. Other applications include precision data acquisition systems, precision integrators, and accurate threshold detectors in designs where board space is a limitation.


#### Part Number Information

| PART<br>NUMBER | TEMPERATURE<br>RANGE | PACKAGE             |
|----------------|----------------------|---------------------|
| HA1-5134/883   | -55°C to +125°C      | 14 Lead CerDIP      |
| HA4-5134/883   | -55°C to +125°C      | 20 Lead Ceramic LCC |

### **Pinouts**









# Specifications HA-5134/883

### **Absolute Maximum Ratings**

### **Thermal Information**

| Voltage Between V+ and V- Terminals 40V      |  |
|----------------------------------------------|--|
| Differential Input Voltage 6V                |  |
| Voltage at Either Input Terminal V+ to V-    |  |
| Input Current25mA                            |  |
| Output Current Full Short Circuit Protection |  |
| Output Current Duration Indefinite           |  |
| (One Amplifier Shorted to Ground)            |  |
| Junction Temperature+175°C                   |  |

Storage Temperature Range . . . . . . . . . -65°C to +150°C

| Thermal Resistance                           | $\theta_{JA}$ | $\theta_{JC}$ |
|----------------------------------------------|---------------|---------------|
| CerDIP Package                               | 75°C/W        | 20°C/W        |
| Ceramic LCC Package                          | 65°C/W        | 15°C/W        |
| Package Power Dissipation Limit at +75°C for |               | C O           |
|                                              | •             |               |

 CerDIP Package
 1.33W

 Ceramic LCC Package
 1.54W

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

### **Operating Conditions**

#### TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at:  $V_{SUPPLY} = \pm 15V$ ,  $R_{SOURCE} = 50\Omega$ ,  $R_{LOAD} = 100k\Omega$ ,  $V_{OUT} = 0V$ , Unless Otherwise Specified.

|                      |                    |                                                                           | GROUP A   |               | LIN  | LIMITS |       |
|----------------------|--------------------|---------------------------------------------------------------------------|-----------|---------------|------|--------|-------|
| PARAMETERS           | SYMBOL             | CONDITIONS                                                                | SUBGROUPS | TEMPERATURE   | MIN  | MAX    | UNITS |
| Input Offset Voltage | V <sub>IO</sub>    | $V_{CM} = 0V$                                                             | 1         | +25°C         | -200 | 200    | μV    |
|                      |                    |                                                                           | 2, 3      | +125°C, -55°C | -350 | 350    | μV    |
| Offset Voltage Match | $\Delta V_{IO}$    | V <sub>IO</sub> (Max) -V <sub>IO</sub> (Min)                              | 1         | +25°C         | -    | 200    | μV    |
|                      |                    |                                                                           | 2, 3      | +125°C, -55°C | -    | 350    | μV    |
| Input Bias Current   | +l <sub>B</sub>    | $V_{CM} = 0V$ ,                                                           | 1         | +25°C         | -50  | 50     | nA    |
|                      |                    | $+R_S = 10k\Omega$ ,<br>$-R_S = 50\Omega$                                 | 2, 3      | +125°C, -55°C | -75  | 75     | nA    |
|                      | -l <sub>B</sub>    | $V_{CM} = 0V$ ,                                                           | 1         | +25°C         | -50  | 50     | nA    |
|                      |                    | $+R_S = 50\Omega$ ,<br>$-R_S = 10k\Omega$                                 | 2, 3      | +125°C, -55°C | -75  | 75     | nA    |
| Input Offset Current | I <sub>IO</sub>    | $V_{CM} = 0V$ ,                                                           | 1         | +25°C         | -50  | 50     | nA    |
|                      |                    | $+R_S = 10k\Omega$ ,<br>$-R_S = 10k\Omega$                                | 2, 3      | +125°C, -55°C | -75  | 75     | nA    |
| Common Mode          | +CMR               | V+ = +5V, V- = -25V                                                       | 1         | +25°C         | 10   | -      | V     |
| Range                |                    |                                                                           | 2, 3      | +125°C, -55°C | 10   | -      | V     |
|                      | -CMR               | V+ = +25V, V- = -5V                                                       | 1         | +25°C         | -    | -10    | V     |
|                      |                    |                                                                           | 2, 3      | +125°C, -55°C | -    | -10    | V     |
| Large Signal Voltage | +A <sub>VOL</sub>  | $V_{OUT} = 0V$ and +10V,<br>$R_L = 2k\Omega$                              | 4         | +25°C         | 800  | -      | kV/V  |
| Gain                 |                    |                                                                           | 5, 6      | +125°C, -55°C | 500  | -      | kV/V  |
|                      | -A <sub>VOL</sub>  | $V_{OUT} = 0V$ and -10V,<br>$R_L = 2k\Omega$                              | 4         | +25°C         | 800  | -      | kV/V  |
|                      |                    |                                                                           | 5, 6      | +125°C, -55°C | 500  | -      | kV/V  |
| Common Mode          | +CMRR              | $\Delta V_{CM} = 10V,$<br>V+ = +5V, V- = -25V,<br>V <sub>OUT</sub> = -10V | 1         | +25°C         | 100  | -      | dB    |
| Rejection Ratio      |                    |                                                                           | 2, 3      | +125°C, -55°C | 94   | -      | dB    |
|                      | -CMRR              | $\Delta V_{CM} = 10V$ ,                                                   | 1         | +25°C         | 100  | -      | dB    |
|                      |                    | $V+ = +25V, V- = -5V, V_{OUT} = +10V$                                     | 2, 3      | +125°C, -55°C | 94   | -      | dB    |
| Output Voltage       | +V <sub>OUT1</sub> | $R_L = 2k\Omega$                                                          | 4         | +25°C         | 12   | -      | V     |
| Swing                |                    |                                                                           | 5, 6      | +125°C, -55°C | 12   | -      | V     |
|                      | -V <sub>OUT1</sub> | $R_L = 2k\Omega$                                                          | 4         | +25°C         | -    | -12    | V     |
|                      |                    |                                                                           | 5, 6      | +125°C, -55°C | -    | -12    | V     |

- .. F44000 000

# Specifications HA-5134/883

### TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Tested at:  $V_{SUPPLY} = \pm 15V$ ,  $R_{SOURCE} = 50\Omega$ ,  $R_{LOAD} = 100k\Omega$ ,  $V_{OUT} = 0V$ , Unless Otherwise Specified.

|                 |                   |                                               | GROUP A   | GROUP A       |     | LIMITS |       |
|-----------------|-------------------|-----------------------------------------------|-----------|---------------|-----|--------|-------|
| PARAMETERS      | SYMBOL            | CONDITIONS                                    | SUBGROUPS | TEMPERATURE   | MIN | MAX    | UNITS |
| Output Current  | +I <sub>OUT</sub> | V <sub>OUT</sub> = -10V                       | 4         | +25°C         | 15  | -      | mA    |
|                 |                   |                                               | 5, 6      | +125°C, -55°C | 8   | -      | mA    |
|                 | -l <sub>out</sub> | V <sub>OUT</sub> = +10V                       | 4         | +25°C         | -   | -15    | mA    |
|                 |                   |                                               | 5, 6      | +125°C, -55°C | -   | -8     | mA    |
| Quiescent Power | +I <sub>CC</sub>  | V <sub>OUT</sub> = 0V, I <sub>OUT</sub> = 0mA | 1         | +25°C         | -   | 6.8    | mA    |
| Supply Current  |                   |                                               | 2, 3      | +125°C, -55°C | -   | 8      | mA    |
|                 | -I <sub>CC</sub>  | V <sub>OUT</sub> = 0V, I <sub>OUT</sub> = 0mA | 1         | +25°C         | -   | 6.8    | mA    |
|                 |                   |                                               | 2, 3      | +125°C, -55°C | -   | 8      | mA    |
| Power Supply    | +PSRR             | $\Delta V_{SUP} = 10V$ ,                      | 1         | +25°C         | 100 | -      | dB    |
| Rejection Ratio |                   | V+ = +20V, V- = -15V<br>V+ = +10V, V- = -15V  | 2, 3      | +125°C, -55°C | 94  | -      | dB    |
|                 | -PSRR             | $\Delta V_{SUP} = 10V$ ,                      | 1         | +25°C         | 100 | -      | dB    |
|                 |                   | V+ = +15V, V- = -20V<br>V+ = +15V, V- = -10V  | 2, 3      | +125°C, -55°C | 94  | -      | dB    |

#### TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at:  $V_{SUPPLY} = \pm 15V$ ,  $R_{SOURCE} = 50\Omega$ ,  $R_{LOAD} = 2k\Omega$ ,  $C_{LOAD} = 50pF$ ,  $A_{VCL} = +1V/V$ , Unless Otherwise Specified.

|                    |                |                                                                     | GROUP A   |             | LIMITS |     |       |
|--------------------|----------------|---------------------------------------------------------------------|-----------|-------------|--------|-----|-------|
| PARAMETERS         | SYMBOL         | CONDITIONS                                                          | SUBGROUPS | TEMPERATURE | MIN    | MAX | UNITS |
| Slew Rate          | +SR            | $V_{OUT} = -3V \text{ to } +3V$                                     | 7         | +25°C       | 0.75   | -   | V/µs  |
|                    | -SR            | $V_{OUT} = +3V \text{ to } -3V$                                     | 7         | +25°C       | 0.75   | -   | V/µs  |
| Rise and Fall Time | t <sub>R</sub> | $V_{OUT} = 0 \text{ to } +200 \text{mV}$<br>$10\% \le T_R \le 90\%$ | 7         | +25°C       | -      | 400 | ns    |
|                    | t <sub>F</sub> | $V_{OUT} = 0 \text{ to } -200 \text{mV}$<br>$10\% \le T_F \le 90\%$ | 7         | +25°C       | -      | 400 | ns    |
| Overshoot          | +OS            | V <sub>OUT</sub> = 0 to +200mV                                      | 7         | +25°C       | -      | 40  | %     |
|                    | -OS            | V <sub>OUT</sub> = 0 to -200mV                                      | 7         | +25°C       | -      | 40  | %     |

### TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at:  $V_{SUPPLY} = \pm 15V$ ,  $R_{LOAD} = 2k\Omega$ ,  $C_{LOAD} = 50pF$ , Unless Otherwise Specified.

|                                     |                    |                                  |       |                 | LIN | IITS |                   |
|-------------------------------------|--------------------|----------------------------------|-------|-----------------|-----|------|-------------------|
| PARAMETERS                          | SYMBOL             | CONDITIONS                       | NOTES | TEMPERATURE     | MIN | MAX  | UNITS             |
| Average Offset Voltage<br>Drift     | V <sub>IO</sub> TC | V <sub>CM</sub> = 0V             | 1     | -55°C to +125°C | -   | 2    | μV/°C             |
| Differential Input<br>Resistance    | R <sub>IN</sub>    | V <sub>CM</sub> = 0V             | 1     | +25°C           | 20  | -    | МΩ                |
| Low Frequency<br>Peak-to-Peak Noise | E <sub>NP-P</sub>  | 0.1Hz to 10Hz                    | 1     | +25°C           | -   | 0.25 | μV <sub>P-P</sub> |
| Input Noise Voltage<br>Density      | E <sub>N</sub>     | $R_S = 20\Omega$ , $f_O = 1$ kHz | 1     | +25°C           | -   | 10   | nV/√Hz            |
| Input Noise Current<br>Density      | I <sub>N</sub>     | $R_S = 2M\Omega$ , $f_O = 1kHz$  | 1     | +25°C           | -   | 2    | pA/√Hz            |

- ... F44000 000

# Specifications HA-5134/883

#### TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

Device Characterized at:  $V_{SUPPLY} = \pm 15V$ ,  $R_{LOAD} = 2k\Omega$ ,  $C_{LOAD} = 50pF$ , Unless Otherwise Specified.

|                                    |                  |                                                               |       |                 | LIM  | IITS |       |
|------------------------------------|------------------|---------------------------------------------------------------|-------|-----------------|------|------|-------|
| PARAMETERS                         | SYMBOL           | CONDITIONS                                                    | NOTES | TEMPERATURE     | MIN  | MAX  | UNITS |
| Gain Bandwidth Product             | GBWP             | $V_O = 200 \text{mV},$<br>$f_O \ge 100 \text{kHz}$            | 1     | +25°C           | 3    | -    | MHz   |
| Unity Bandwidth Product            | UBWP             | V <sub>O</sub> = 200mV                                        | 1     | +25°C           | 3    | -    | MHz   |
| Slew Rate                          | +SR              | $V_{OUT} = -3V \text{ to } +3V$                               | 1     | +25°C to +125°C | 0.75 | -    | V/μs  |
|                                    | -SR              | $V_{OUT} = +3V \text{ to } -3V$                               | 1     | -55°C           | 0.6  | -    | V/μs  |
| Full Power Bandwidth               | FPBW             | V <sub>PEAK</sub> = 10V                                       | 1, 2  | +25°C           | 12   | -    | kHz   |
| Minimum Closed Loop<br>Stable Gain | CLSG             | $R_L = 2k\Omega$ , $C_L = 50pF$                               | 1     | -55°C to +125°C | +1   | -    | V/V   |
| Rise and Fall Time                 | t <sub>R</sub>   | $V_{OUT} = 0V \text{ to } +200\text{mV}$                      | 1, 4  | -55°C to +125°C | -    | 400  | ns    |
|                                    | t <sub>F</sub>   | $V_{OUT} = 0V \text{ to } -200\text{mV}$                      | 1, 4  | -55°C to +125°C | -    | 400  | ns    |
| Overshoot                          | +OS              | $V_{OUT} = 0V \text{ to } +200\text{mV}$                      | 1     | -55°C to +125°C | -    | 40   | %     |
|                                    | -OS              | $V_{OUT} = 0V \text{ to } -200\text{mV}$                      | 1     | -55°C to +125°C | -    | 40   | %     |
| Output Resistance                  | R <sub>OUT</sub> | Open Loop                                                     | 1     | +25°C           | -    | 86   | Ω     |
| Power Consumption                  | PC               | V <sub>OUT</sub> = 0V, I <sub>OUT</sub> = 0mA                 | 1, 3  | -55°C to +125°C | -    | 240  | mW    |
| Channel Separation (AC)            | CS (AC)          | $V_{IN} = 1V_{P-P},$<br>$f_O = 100Hz$                         | 1     | +25°C           | 120  | -    | dB    |
|                                    |                  | $V_{IN} = 1V_{P-P},$<br>$f_O = 10kHz$                         | 1     | +25°C           | 120  | -    | dB    |
| Channel Separation (DC)            | CS (DC)          | $V_{O} = \pm 10V (20V_{P-P}),$<br>$\Delta V_{IO} \le 20\mu V$ | 1     | +25°C           | 120  | -    | dB    |

### NOTES:

- 1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
- 2. Full Power Bandwidth guarantee based on Slew Rate measurement using FPBW = Slew Rate/ $(2\pi V_{PEAK})$ .
- 3. Power Consumption based upon Quiescent Supply Current test maximum. (No load on outputs.).
- 4. Measured between 10% and 90% points.

**TABLE 4. ELECTRICAL TEST REQUIREMENTS** 

| MIL-STD-883 TEST REQUIREMENTS               | SUBGROUPS (SEE TABLES 1 AND 2) |
|---------------------------------------------|--------------------------------|
| Interim Electrical Parameters (Pre Burn-In) | 1                              |
| Final Electrical Test Parameters            | 1 (Note 1), 2, 3, 4, 5, 6, 7   |
| Group A Test Requirements                   | 1, 2, 3, 4, 5, 6, 7            |
| Groups C and D Endpoints                    | 1                              |

#### NOTE:

1. PDA applies to Subgroup 1 only.

- ... F44000 000

#### HA-5134/883

#### Die Characteristics

#### **DIE DIMENSIONS:**

91 x 114 x 19 mils  $\pm$  1 mils 2300 x 2900 x 483 $\mu$ m  $\pm$  25.4 $\mu$ m

#### **METALLIZATION:**

Type: Al, 1% Cu

Thickness: 16kÅ ± 2kÅ

#### **GLASSIVATION:**

Type: Nitride (Si3N4) over Silox (SIO2, 5% Phos.)

Silox Thickness:  $12k\mathring{A} \pm 2k\mathring{A}$ Nitride Thickness:  $3.5k\mathring{A} \pm 1.5k\mathring{A}$ 

### **WORST CASE CURRENT DENSITY:**

 $2.5 \times 10^{5} \text{A/cm}^{2}$ 

This device meets Glassivation Integrity Test Requirement

per MIL-STD-883 Method 2021 and MIL-I-38535 Paragraph 30.5.5.4.

#### SUBSTRATE POTENTIAL (Powered Up):

Unbiased

**TRANSISTOR COUNT: 160** 

PROCESS: Bipolar Dielectric Isolation

### Metallization Mask Layout

HA-5134/883
-IN1 OUT1 OUT4 -IN4

+IN1

+IN2
-IN2 OUT2 OUT3 -IN3

All Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at website <a href="https://www.intersil.com/design/quality/iso.asp">www.intersil.com/design/quality/iso.asp</a>.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

- F44000 000