

Current Transducer HAT 500..1500 - S

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$$V_{OUT} = \pm 4 V$$

Preliminary

Electrical data						
Primary nomina r.m.s. current	Primary current measuring range	Туре				
500	± 1500	HAT 500-S				
800 1000	± 2400 ± 3000	HAT 800-S HAT 1000-S				
1200	± 3000	HAT 1200-S				
1500	± 3000	HAT 1500-S				
$\mathbf{V}_{_{\mathrm{C}}}$	Supply voltage (± 5 %)	± 15	V			
I _c	Current consumption	± 15	mΑ			
I _C V _d	R.m.s. voltage for AC isolation test, 50/60Hz, 1mn	3	kV			
V _b	R.m.s. rated voltage, safe separation	500 ¹⁾	V			
R	Isolation resistance @ 500 VDC	> 1000	$M\Omega$			
VOUT	Output voltage @ \pm I _{PN} , R _L = 10 k Ω , T _A = 25°C	± 4V± 40	mV			
R _{OUT}	Output internal resistance	100	Ω			
R	Load resistance	> 1	$k\Omega$			

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 3000 V
- Low power consumption
- Extended measuring range(3 x I_{PN})
- Insulated plastic case recognized according to UL 94-V0

Acc	uracy-Dynamic performance data		
Χ	Accuracy @ I_{PN} , $T_{\Delta} = 25^{\circ}C$ (without offset)	< ± 1	% of I _{PN}
e ,	Linearity ²⁾ $(0 \pm I_{PN})$		% of I
V OE	Electrical offset voltage, T _A = 25°C	< ± 20	m̈̈́V
V _{OH}	Hysteresis offset voltage @ I _p = 0;		
OH	after an excursion of 1 x I _{PN}	< ± 10	mV
V _{OT}	Thermal drift of V _{OE}	< ± 1	mV/K
V _{OT} TC e	Thermal drift of the gain (% of reading)	$< \pm 0.1$	%/K
t,	Response time @ 90% of Ip	< 5	μs
f	Frequency bandwidth (- 3 dB) 3)	DC 50	kHz

Advantages

- Easy mounting
- · Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

General data	

$T_{\scriptscriptstyle \Delta}$	Ambient operating temperature		- 10 + 80	°C
T _s	Ambient storage temperature		- 15 + 85	°C
m	Mass	арр.	300	g
	Standards 4)		EN 50178	

Applications

- DC motor drives
- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Battery supplied applications
- Power supplies for welding applications

Notes:

- 1) Pollution class 2, overvoltage category III.
- 2) Linearity data exclude the electrical offset.
- ³⁾ Please refer to derating curves in the technical file to avoid excessive core heating at high frequency.
- 4) Please consult characterisation report for more technical details and application advice.

HAT-S SERIES (unit = mm)

All holes Ø 4.5mm

Fixation by base-plate or on bus bar with M4 screws

Pins arrangement:
1 2 3 4
(+) (-) Output 0V