

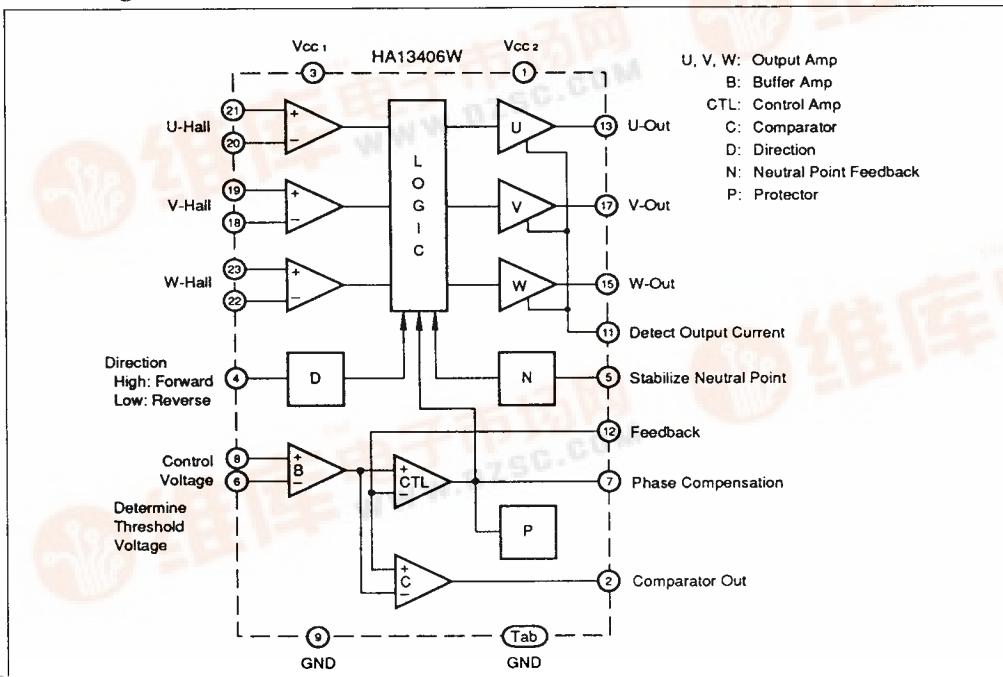
Three-Phase Brushless Motor Driver

Description

The HA13406W power IC is developed for driving three-phase brushless motors. It provides hall effect sensor amps, logic, output amps, control amp, and forward and back rotation circuit functions on one chip. The maximum driving current and voltage is as much as 3A at 12V per phase. Therefore, it finds its best use driving the spindle motor of a 5.25 inch hard disk drive.

HA13406W

(SP-23TA)


Features

- 3A output current capability
- Low output saturation voltage
- Hall effect amps with hysteresis
- Over temperature protection
- Low thermal resistance package

Ordering Information

Type No.	Package
HA13406W	SP-23TA

Block Diagram

HA13406W

Application

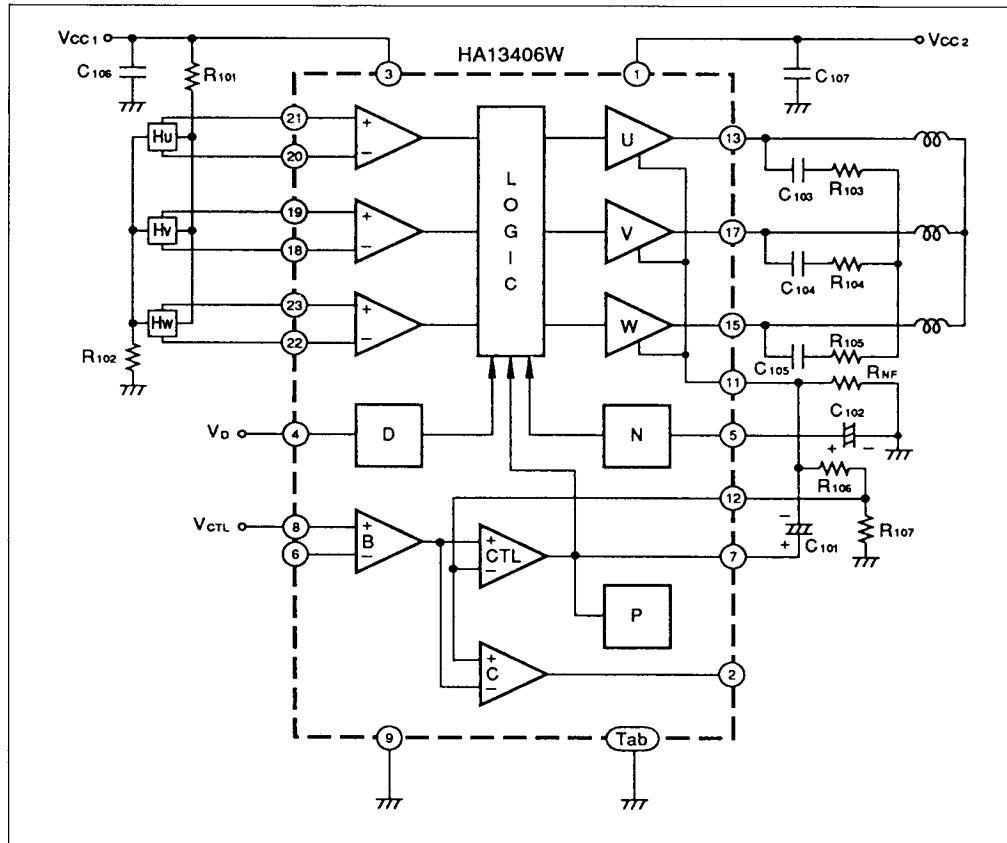


Figure 1 Linear Drive Circuit

Figure 1 and Table 1 show the HA13406W in a linear drive circuit.

The output stage is saturated at starting and is usually not saturated.

Therefore, the loss is comparatively large and a heat sink may be required.

The relationship between the current I_o , which flows into the motor coil, and the control voltage V_{CTL} is:

$$I_o = \frac{(R_{106} + R_{107})}{R_{107}} \frac{V_{CTL} - V_{Ref}}{R_{NF}} \quad \dots \dots \dots (1)$$

where $V_{CTL} \geq V_{Ref}$

Here, V_{Ref} is the voltage at pin 6. It is set to $V_{cc1}/2$ internally.

Connecting the output of the servo IC to the terminal 8 constructs the servo driving system.

When $R_{106}=0$, and $R_{107}=\infty$ (voltage gain of the control amp is 0dB), equation (1) will be:

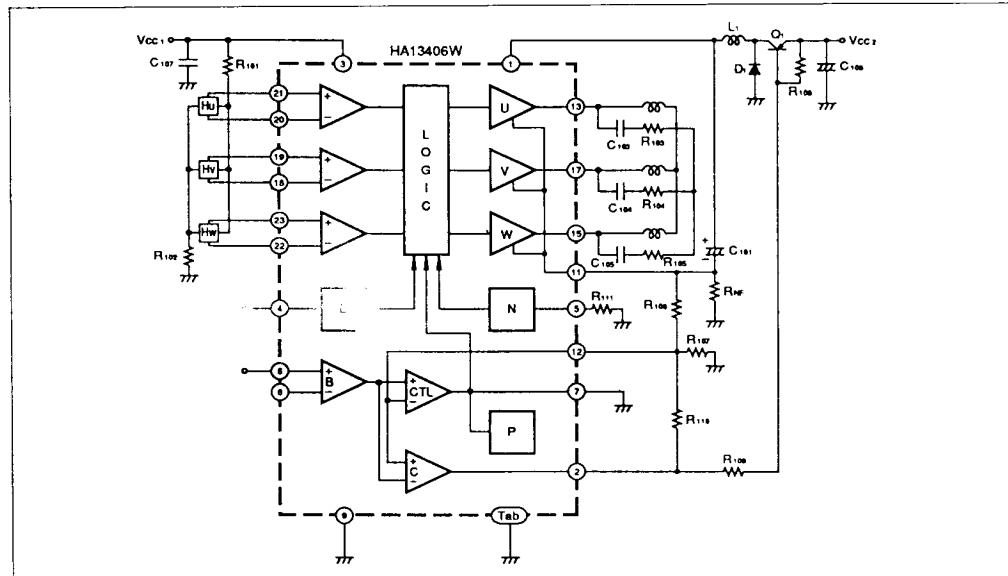

$$I_o = \frac{V_{CTL} - V_{Ref}}{R_{NF}} \quad \dots \dots \dots (2)$$

Table 1 Linear Drive External Components

Part No.	Recommended value	Purpose
R ₁₀₁ , R ₁₀₂	(Note 1)	Hall effect element bias
R ₁₀₃ , R ₁₀₄ , R ₁₀₅	10 Ω(1/4 W)	Stability
R ₁₀₆ , R ₁₀₇	—	Determine the control amp gain
R _{NF}	0.22 Ω (2 W)	Detect output current
C ₁₀₁	1 μF/16 WV	Control amp phase compensation
C ₁₀₂	10 μF/16 WV	Stabilizes the neutral point
C ₁₀₃ , C ₁₀₄ , C ₁₀₅	100μF/16 WV (Note 2)	Stability
C ₁₀₆	0.1μF	Power supply by-passing
C ₁₀₇	100 μF/16 WV	Power supply by-passing

Notes: 1. Set so that the input voltage of the hall effect amp (AC) will be more than 100mVpp.
 2. If the system is adversely affected by the spike voltage at commutation, make it larger (max 22μF).

High-Efficiency Drive

HA13406W

Figure 2 and table 2 show the HA13406W in a high-efficiency drive circuit.

As the output stage is always saturated, the loss is less than in the linear drive application and the efficiency of the system may be increased.

The comparator C oscillates automatically and its on-off duty cycle is controlled by the control voltage V_{CTL} . Consequently, the on-off duty cycle of the external switching transistor Q1 is also controlled by V_{CTL} . That is called PWM (pulse width modulation) control of power supply, which means that one pin voltage of IC's is controlled.

The voltage which appears at current detection resistor R_{NF} feeds back to the comparator C, so that the relationship between the current which flows into the motor coil, I_o , and the control voltage V_{CTL} is also shown in the equation (1).

The automatic oscillating frequency f_c is mostly determined by the external constant on around the duty of 50%.

$$f_c = \frac{R_{NF} R_{110}}{4L_1 R_{106}} \quad \dots \dots \dots (3)$$

f_c should be set in the range between 20 and 100kHz.

Table 2 High-Efficiency Drive External Components

Part No.	Recommended value	Purpose
R ₁₀₁ , R ₁₀₂	—	Hall effect element bias
R ₁₀₃ , R ₁₀₄ , R ₁₀₅	10 Ω (1/4 W)	Stability (May be omitted if there is no oscillation)
R ₁₀₆ , R ₁₀₇	—	Determine the control
R ₁₀₈	2.2 kΩ (1/4 W)	Prevents errors caused by leak current
R ₁₀₉	2.2 kΩ (1/4 W)	Limits comparator output current
R ₁₁₀	—	Determines the comparator hysteresis
R ₁₁₁	4.7 kΩ	Neutral point feedback circuit bias
R _{NF}	0.22 Ω (2 W)	Detect output current
C ₁₀₁	100 μF/16 WV	Lowpass filter
C ₁₀₃ , C ₁₀₄ , C ₁₀₅	0.1 μF	Stability (May be omitted if there is no oscillation)
C ₁₀₇ , C ₁₀₈	0.1 μF	Power supply by-passing
L ₁	1 mH	Lowpass filter
Q ₁	—	Switches power supply
D ₁	—	Flywheel diode

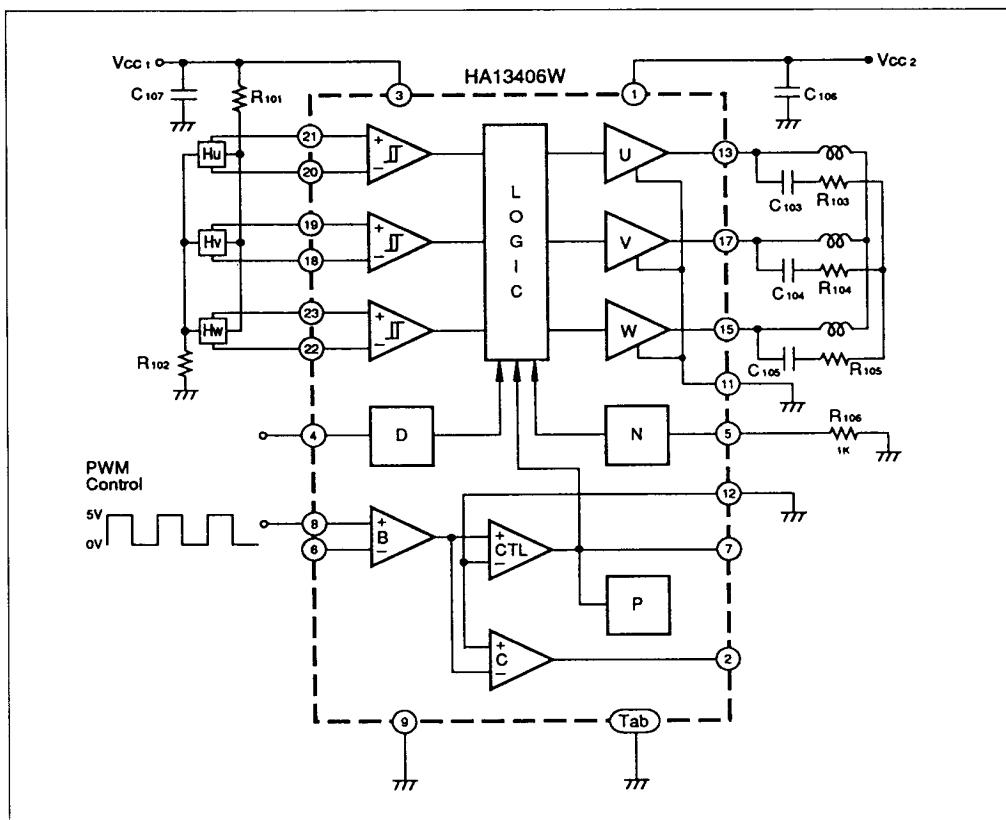


Figure 3 High-Frequency Drive Circuit

High-Frequency Drive

Figure 3 and table 3 show the HA13406W in a high-frequency drive circuit.

As the output stage is always saturated, the loss is less than in the linear drive application and the efficiency of the system may be increased.

In this application, output transistors are saturated or shut off. Output transistors switch on (saturate) at control input high, and switch off at the low state. That is, motor speed can be controlled by PWM.

The fundamental frequency should be in the range from 1kHz to 20kHz

HA13406W

Table 3 High-Frequency Drive External Components

Part No.	Recommended value	Purpose
R ₁₀₁ , R ₁₀₂	—	Hall effect element bias
R ₁₀₃ , R ₁₀₄ , R ₁₀₅	10 Ω (1/4 W)	Stability (May be omitted if there is no oscillation)
R ₁₀₆	1 kΩ	Output stage bias
C ₁₀₃ , C ₁₀₄ , C ₁₀₅	0.1 μF	Stability
C ₁₀₆ , C ₁₀₇	0.1 μF	Power supply by-passing

Table 4 Absolute Maximum Ratings (Ta=25 °C)

Item		Symbol	Ratings	Unit
Control stage supply voltage (note 1)		V _{CC1}	7	V
Output stage supply voltage (note 1)		V _{CC2}	15	V
Output current		I _O	3	A
Power dissipation		P _T	25	W
Thermal resistance	junction-case	θ _{J-C}	3.0	°C/W
	Junction-ambient	θ _{J-A}	40	
Hall effect amp input voltage		V _H	0 to V _{CC1}	V
Direction voltage		V _D	0 to V _{CC1}	V
Control voltage		V _{CTL}	0 to V _{CC1}	V
Junction temperature		T _J	150	°C
Operating junction temperature range		T _{JOP}	-20 to +125	°C
Storage temperature range		T _{STG}	-55 to +125	°C

Note: 1. Recommended operating voltage

	Min	Typ	Max	Unit
V _{CC1}	4.5	5.0	5.5	V
V _{CC2}	10.2	12	13.8	V

The absolute maximum ratings are limiting values, to be applied individually, beyond which the device may be permanently damaged. Functional operation under any of these conditions is not guaranteed. Exposing a circuit to its absolute maximum rating for extended periods of time may affect the device's reliability.

Table 5 Electrical Characteristics (Ta=25°C, Vcc1=5V, Vcc2=12V)

Item		Min	Typ	Max	Unit	Test Conditions	Test Terminal
Total	Quiescent current	—	10	15	mA	VCTL=0V	Vcc1 3
		—	10	15	mA		Vcc2 1
		—	10	15	mA	VCTL=Vcc1	Vcc1 3
		—	105	150	mA	RL=Open	Vcc2 1
Thermal shut-down temperature (Note 1)		—	150	—	°C	VCTL=Vcc1, Io=0.1 A	
Hall effect amp to logic	Input bias current	—	—	±50	µA	18-23	
	Input common-mode voltage range	2.0	—	3.0	V	18-23	
	Hysteresis width	15	—	30	mV	Rg=220 Ω	18-23
Output	Sustaining voltage	15	—	—	V	Io=20 mA	13, 15, 17
	Leak current	—	—	10	mA	Vce=15 V	13, 15, 17
	Saturating voltage	—	2.8	3.8	V	VCTL=Vcc1, Io=2.8 A	13, 15, 17
Buffer	Internal reference voltage	2.35	2.5	2.65	V	6	
	Output resistance of reference	—	2.5	—	kΩ	6	
	Threshold voltage	—	100	—	mV	Io=20 mA	8
	Input current	—	0	±10	µA	VCTL=5 V	8
		—	-3	±10	µA	VCTL=1 V	8
	Voltage gain	—	0	—	dB	Io=0.8 A, f=500 Hz	11
Control amp	Input offset voltage	—	100	—	mV	Io=20 mA	12
	Voltage gain	—	0	—	dB	Io=0.8 A, f=500 Hz	11

HA13406W

Electrical Characteristics (Ta=25°C, Vcc1=5V, Vcc2=12V) (cont)

Compara -tor	Leak current	—	—	1.0	mA	Vce=15 V	2
	Saturation voltage	—	1.0	1.5	V	Ic=20 mA	2
Direction	Voltage range for forward mode	2.0	—	5	V		4
	Voltage range for reverse mode	0	—	0.7	V		4
	Input current	—	—	1.2	mA	Vb=GND	4
		—	—	0	mA	Vb=5 V	4

Notes:

1. Case temperature
2. Sum of the upper and lower saturation voltage
3. Reference to pin 6

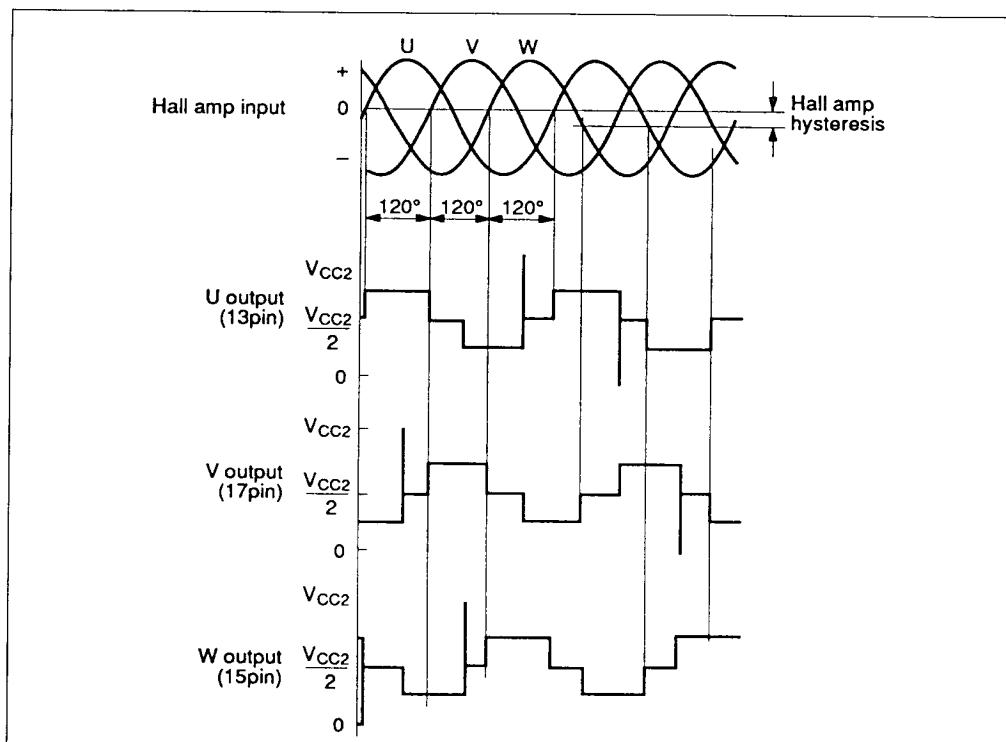


Figure 4 Timing Chart