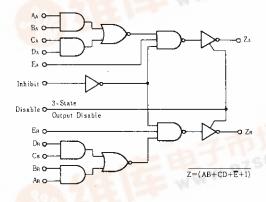
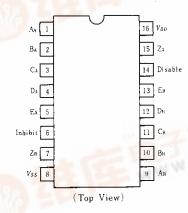
出货


Dual 2-wide 2-input Expandable AND-OR-INVERT Gate

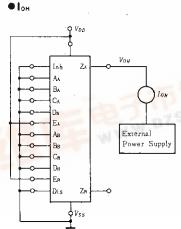
The HD14506B is an expandable AND-OR-INVERT gate with inhibit and 3-state output. The expand option allows cascading with any other gate, which may be carried as far as desired as long as the propagation delay added with each gate is considered. For example, the second AOI gate in this device may be used to expand the first gate, giving an expanded 4-wide, 2-input AOI gate. This device is useful in data control and digital multiplexing applications.

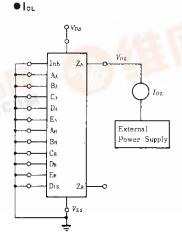

FEATURES

- Quiescent Current = 2nA/pkg typ. @5V
- 3-state Output
- · Separate Inhibit Line
- Supply Voltage Range = 3 to 18V
- Capable of Driving One Low-power Schottky TTL Load Over the Rated Temperature Range

LOGIC DIAGRAM

■ PIN ARRANGEMENT

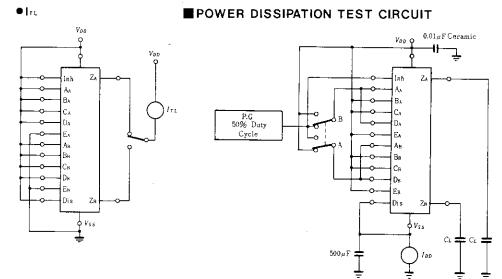



TRUTH TABLE

A	В	С	D	Е	Inhibit	Disable	Z
0	0	0	0	1	0	0	1
0	×	0	×	1	0	0	1
0	×	×	0	1	0	0	1
×	0	0	×	1	0	0	1
×	0	×	0	1	0	0	1
1	1	×	×	×	×	0	0
×	×	1	1	×	×	0	0
×	X	×	×	0	×	0	0
×	×	×	X	×	1	0	0
×	×	×	×	×	×	1	High Impedance

x=Don't Care

IDC CHARACTERISTIC TEST CIRCUIT

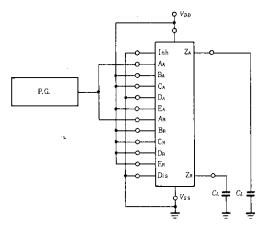


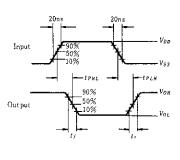
■ ELECTRICAL CHARACTERISTICS

Characteristic	Symbo	Test Conditions	40°C			25°C			85° C		
	Symbol	$V_{DD}(\mathbf{V})$) rest conditions	min	max	mín	typ	max	min	max	Unit
	İ	5.0	$V_{in} = V_{DD}$ or 0		0.05		0	0.05	_	0.05	v
	Vol	10			0.05	-	0	0.05	_	0.05	
Output Voltage		15			0.05	_	0	0.05		0.05	
·		5.0		4.95	-	4.95	5.0		4.95	_	V
	V_{OH}	10	$V_{in} = 0$ or V_{DD}	9.95		9.95	10	_	9.95		
		15		14.95	_	14.95	15	-	14.95		
	:	5.0	$V_{out} = 4.5 \text{ or } 0.5 \text{V}$		1.5	_	2.25	1.5	_	1.5	v
15	V_{IL}	10	$V_{out} = 9.0 \text{ or } 1.0 \text{V}$	_	3.0	_	4.50	3.0	_	3.0	
Input Voltage		15	$V_{\rm out} = 13.5 \text{ or } 1.5 \text{ V}$		4.0	_	6.75	4.0		4.0	
Input voitage		5.0	$V_{out} = 0.5 \text{ or } 4.5 \text{V}$	3.5	_	3.5	2.75	_ <u>-</u>	3.5	_	v
	V_{IH}	10	$V_{out} = 1.0$ or $9.0\mathrm{V}$	7.0	_	7.0	5.50	_	7.0	_	
		15	$V_{\text{out}} = 1.5 \text{ or } 13.5 \text{V}$	11.0	i -	11.0	8.25	_	11.0	_	
		5.0	$V_{OH} = 2.5 \text{V}$	-1.0		-0.8	-1.7	_	-0.6	_	mA
	I_{OH}	5.0	$V_{OH} = 4.6 \text{V}$	-0.2		-0.16	-0.36	_	-0.12	_	
	10#	10	$V_{OH} = 9.5 \mathrm{V}$	-0.5	_	-0.4	-0.9	_	-0.3		
Output Drive Current		15	$V_{OH} = 13.5 \text{V}$	-1.4	_	-1.2	-3.5	_	-1.0	_	
		5.0	$V_{oL} = 0.4 \text{V}$	0.52	_	0.44	0.88	_	0.36	_	mA
	InL	10	$V_{OL} = 0.5 \text{V}$	1.3	_	1.1	2.25		0.9	_	
		15	$V_{oL} = 1.5 \text{V}$	3.6		3.0	8.8		2,4	_	
Input Current	I_{in}	15		-	±0.3	_	±0.00001	±0.3	_	±1.0	μΑ
Input Capacitance	C.,		$V_{in} = 0$	T -		_	5.0	7.5	_	_	pF
		5.0			4.0	_	0.002	4.0	- 1	30	μΑ
Quiescent Current	I_{DD}	10	Zero Signal, Per Package	_	8.0		0.004	8.0	_	60	
		15		_	16	_	0.006	16	_	120	
· -		5.0	Dynamic $+I_{DD}$,				0.6				μΑ
Total Supply Current*	I_T	10	Per Gate	_		_	1.1	_	_		
	Ì	15	$C_L = 50 \mathrm{pF}, f = 1 \mathrm{kHz}$	_			1.7	-	-		
Three-State Output Leakage Current	I_{TL}	15		! -	±1.0		±0.00001	±1.0		±7.5	μΑ

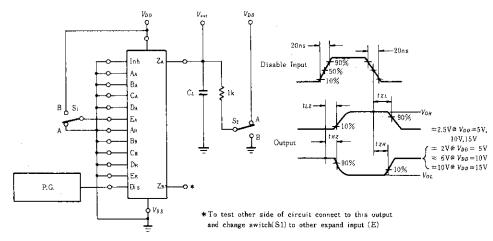
^{*} To calculate total supply current at frequency other than 1kHz. $@V_{DB} = 5.0 \text{V} \ I_T = (0.6 \mu \text{A/kHz}) \ f + I_{DB}, \ @V_{DB} = 10 \text{V} \ I_T = (1.1 \mu \text{A/kHz}) \ f + I_{DB}, \ @V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V} \ I_T = (1.7 \mu \text{A/kHz}) \ f + I_{DB}, \ eq V_{DB} = 15 \text{V}$

■DC CHARACTERISTIC TEST CIRCUIT




■SWITCHING CHARACTERISTICS (C_L =50pF, Ta=25°C)

Characteri	stic	Symbol	$V_{DD}(V)$	min	typ	max	Unit
			5.0	_	180	400	
Output Rise Time	•	t,	10	_	90	200	ns
		15	_	65	160	1	
			5.0	_	100	200	ns
Output Fall Time		<i>t,</i>	10		50	100	
			15	_	37	80	
		tplH	5.0		295	580	ns
<u>.</u>			10	_	110	225	
	Data		15	_	75	180	
	Data	t_{PHL}	5.0		270	480	ns
			10	-	95	175	
			15	_	65	140	
		t_{PLH}	5.0	_	180	430	ns
			10	-	75	160	
Propagation Delay Time	Expand		15	_	50	125	
Topagation Delay Time	Ехрани	tpHL	5.0		200	330	ns
			10	-	80	110	
			15		55	90	
		t _{PLH}	5.0	_	220	500	ns
			10	_	100	225	
	Tabibia		15	_	65	160	
	Inhibit	t _{PHL}	5.0		230	400	ns
			10	-	95	175	
			15		60	150	
			5.0	_	60	150	
		tuz	10	_	45	110	ns
Output Disable Time			15	_	35	90	
weker presents Time			5.0		90	225	
	tuz	10	_	55	140	ns	
		1	15		40	100	
			5.0	_	110	300	
		t_{ZH}	10	-	50	125	ns
Output Enable Time			15	_	40	100	
			5.0		170	425	
		t_{ZL}	10		70	175	ns
			15	_	50	125	


■ SWITCHING TIME TEST CIRCUIT

●telm, teml



● tHz, tLz, tzH, tzL

Switch Positions

Test	S ₁	S2
tız	A	A
l H Z	В	8
121	A	A
4 Z H	8	В

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor

HITACH

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica http:semiconductor.hitachi.com/ Europe http://www.hitachi-eu.com/hel/ecg

Asia (Singapore) http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Taiwan) Asia (HongKóng) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

Japan http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose, CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road

Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia I td Taipei Branch Office

3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsu Kowloon, Hong Kong

Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.