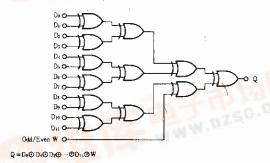
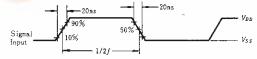

12-bit Parity Tree

The HD14531B 12-bit parity tree consists of 12 data-bit inputs (D0 thru D11), and even or odd parity selection input (W) and an output (Q). The parity selection input can be considered as an additional bit. Words of less than 13 bits can generate an even or odd parity output if the remaining inputs are selected to contain an even or odd number of ones, respectively. Words of greater than 12-bits can be accommodated by cascading other HD14531B devices by using the W input. Applications include checking or including a redundant (parity) bit to a word for error detection/ correction systems, controller for remote digital sensors or switches (digital event detection/correction), or as a multiple input summer without carries.

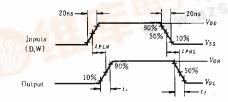
■ FEATURES


- Noise Immunity = 45% of VDD typ.
- Supply Voltage Range = 3 to 18V
- All Outputs Buffered
- Capable of Driving One Low-power Schottky TTL Load Over NWW.DZSC.COM the Rated Temperature Range
- Quiescent Current = 5nA/pkg typ. @5V
- Variable Word Length

■ PIN ARRANGEMENT



(Top View)


LOGIC DIAGRAM

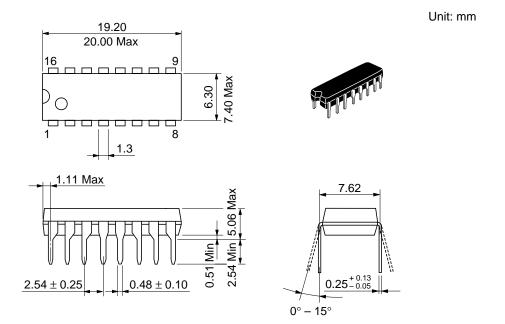
●POWER DISSIPATION SIGNAL WAVEFORM

DYNAMIC SIGNAL WAVEFORMS

TRUTH TABLE

				Inp	uts				Output
W	Dn	D10		Dz	Dı	Do	Decima Equiva	l(Octal) lent	Q*
0	0	0		0	0	0	0	(0)	0
0	0	0		0	0	1	1	(1)	1
0	0	0		0	1	0	2	(2)	1
0	0	0		0	1	1	3	(3)	0
0	0	0		1	0	0	4	(4)	1
0	0	0		1	0	1	5	(5)	0
0	0	0		1	1	0	6	(6)	0
0	0	0		1	1	1	7	(7)	1
	:	:		:	;	:			
									. 0
:	:	1			:	1		J. W.	1
1	1	1		0	0	.0	8184(17770)	0
1	1	1		0	0	1	8185(17771)	1
1	1	1		0	1	0	8186(17772)	1
1	1	1		0	1	1	8187(17773)	0
1	1	1		1	0	0	8188(17774)	1
1	1	1		1	0	1	8189(17775)	0
1	1	1		1	1	0	8190(17776)	0
1	1	1		1	1	1	8191(17777)	1
* 0.	- F	. Dar	ity 1=	ON	Pari				

* 0-Even Parity, 1-Odd Parity


■ELECTRICAL CHARACTERISTICS

: #D1	Symbol		T C		-40℃		25℃			85℃	
Characteristic		$V_{DD}(V)$	Test Conditions	min	max	min	typ	max	min	max	Unit
	Vol	5.0	$V_{i*} = V_{DD}$ or 0		0.05	-	0	0.05		0.05	v
Output Voltage		10		_	0.05	_	0	0.05	_	0.05	
		15			0.05	_	0	0.05	_	0.05	
	Von	5.0	$V_{in}=0$ or V_{DD}	4.95	_	4.95	5.0	_	4.95	_	V.
		10		9.95	_	9.95	10	****	9.95	_	
		15		14.95		14.95	15	-	14.95	_	
	V _r L	5.0	V _{out} =4.5 or 0.5V	-	1.5	_	2.25	1.5	_	1.5	v
		10	V _{out} =9.0 or 1.0V	_	3.0		4.50	3.0	_	3.0	
Input Voltage		15	V _{ew1} = 13.5 or 1.5V	_	4.0	_	6.75	4.0	_	4.0	
input voitage	V_{IH}	5.0	Vost = 0.5 or 4.5V	3.5	_	3.5	2.75	_	3.5	_	v
		10	Vost = 1.0 or 9.0V	7.0	_	7.0	5.50		7.0		
		15	V _{put} =1.5 or 13.5V	11.0	_	11.0	8.25	-	11.0		
	Іон	5.0	V _{OH} == 2.5V	-1.0		-0.8	-1.7	_	-0.6	-	mA
		5.0	V _{OH} = 4.6V	-0.2	_	-0.16	-0.36		-0.12		
		10	V _{он} = 9.5V	-0.5		-0.4	-0.9		-0.3	_	
Output Drive Current		15	V _{он} = 13.5V	-1.4		-1.2	-3.5		-1.0		
	Iol	5.0	Vol = 0.4V	0.52	_	0.44	0.88	_	0.36	_	mA
		10	Vol.=0.5V	1.3	_	1.1	2.25	_	0.9	_	
		15	$V_{oL} = 1.5 \text{V}$	3.6	_	3.0	8.8	_	2.4	_	
Input Current	I_{in}	15		1 -	±0.3	_	±0.00001	±0.3		±1.0	μА
Input Capacitance	C_{in}	_	$V_{in}=0$		_	-	5.0	7.5	_	-	рF
Quiescent Current	IDD	5.0	Zero Signal, per Package		20	-	0.005	20	_	150	μΑ
		10		_	40	_	0.010	40	_	300	
		15			80	_	0.015	80	_	600	
		5.0	Dynamic $+I_{\theta\theta}$, per Gate $C_L = 50 \text{pF}$, $f = 1 \text{kHz}$	_	_	_	0.25		_	_	μА
Total Supply Current*	* I _T	10		_	<u> </u>		0.50	_	_	_	
		15		_	_		0.75	-	_	_	

^{*} To calculate total supply current at frequency other than 1kHz. $@V_{DB} = 5.0V \quad I_{T} = (0.25\,\mu\text{A/kHz})f + I_{DD}, \quad @V_{DB} = 10V \quad I_{T} = (0.50\,\mu\text{A/kHz})f + I_{DD}, \quad @V_{DB} = 15V \quad I_{T} = (0.75\,\mu\text{A/kHz})f + I_{DD},$

ESWITCHING CHARACTERISTICS ($C_L = 50 \,\mathrm{pF}$, $Ta = 25 \,^{\circ}\mathrm{C}$)

Character	Symbol	$V_{DD}(V)$	min	typ	max	Unit	
	t,	5.0	_	180	400	ns	
Output Rise Time		10	_	90	200		
		15		65	160		
	t,	5.0	_	100	200	ns	
Output Fall Time		10		50	100		
		15		37	80		
			5.0		440	1320	
	Data to Q		10	_	175	525	ns
December Delay Time		tрын,	15	_	120	360	
Propagation Delay Time	Odd/Even to Q	t _{PHL}	5.0		250	750	
			10	_	100	300	
			15	_	70	210	

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica : http:semiconductor.hitachi.com/
Europe : http://www.hitachi-eu.com/hel/ecg

Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm

Japan : http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose, CA 95134 Tel: <1> (408) 433-1990 Fax: <1> (408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich

Germany Tel: <49> (89) 9 9180-0

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group.

Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingd

Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office

3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsu Kowloon, Hong Kong

Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.