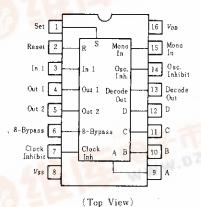

Programmable Timer

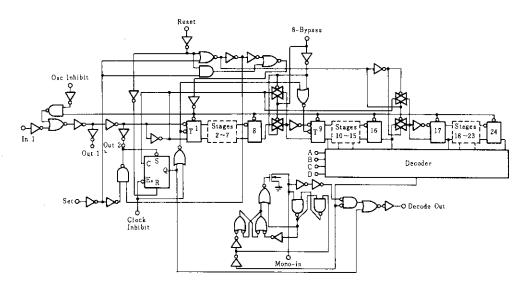
The HD14536B programmable timer is a flexible 24-stage ripple binary counter with 16 stages selectable by a binary code. Provisions for an on-chip RC oscillator, or an external clock are provided. An on-chip monostable circuit incorporating a pulse-type output has also been included. By selecting the appropriate output in conjunction with the correct input clock frequency, a variety of timing can be achieved.


FEATURES

- 24 Flip-Flop Stages ... Will Count from 20 to 224
- Last 16 Stages Selectable by Four-Bit Select Code
- Input Allows Bypassing of First Eight Stages
- Set and Reset Inputs
- Clock Inhibit Input
- On-Chip RC Oscillator Provisions
- On-Chip Monostable Output Provisions
- Clock Conditioning Circuit Permits Operation with Very Long Rise and Fall Times
- Clock Input f_{max} = 3MHz typ. @10V
- Counter Advances On Negative Going Edge of Clock
- Test Mode Allows Fast Test Sequence
- Supply Voltage Range = 3 to 18V
- Capable of Driving One Low-power Schottky TTL Load Over the Rated Temperature Range

■BLOCK DIAGRAM

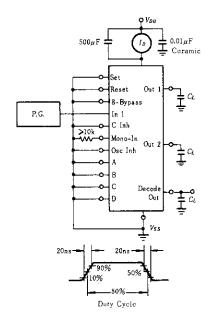
PIN ARRANGEMENT


TRUTH TABLE

D	С	В	A	D. 10.	
			А	Decode Out	8-Bypass
0	0	0	0	9	1
0	0	0	1	10	2
0	0	1	0	11	3
0	0	1	1	12	4
0	1	0	0	13	5
0	1	0	1	14	6
0	1	1	0	15	7
0	1	1	1	16	8
1	0	0	0	17	9
1	0	0	1	18	10
1	0	1	0	19	11
1	0	1	1	20	12
1	1	0	0	21	13
1	1	0	1	22	14
1	1	1	0	23	15
1	1	1	1	24	16

In 1	Set	Reset	Clock Inhibit	Osc. Inhibit	Out 1	Out 2	Decode Out	
	0	0	0	0			No Change	
	0	0	0	0		_/_	Advance to next stage	
×	1	0	0	0	0	1	1	
×	0	1	0	0	0	1	0	
×	0	0	1	0			No Change	
0	0	0	0	×	0	1	No Change	
1	0	0	0	_/_			Advance to next stage	

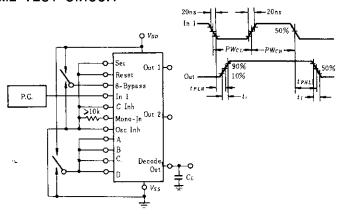
LOGIC DIAGRAM



■ ELECTRICAL CHARACTERISTICS

C1	C	Test Conditions	−40 °C		25 °C			85° C		Unit	
Characteristic	Symbol	$V_{DD}(V)$	Test Conditions	min	max	min	typ	max	min	max	Unit
	Vol	5.0	$V_{in}=V_{DD}$ or 0	-	0.05	_	0	0.05		0.05	v
		10		_	0.05	_	0	0.05		0.05	
		15			0.05	_	0	0.05	-	0.05	
Output Voltage		5.0	$V_{i\pi}=0$ or V_{DD}	4.95	_	4.95	5.0		4.95	_	V
	Von	10		9.95	_	9.95	10	_	9.95	-	
		15		14.95	_	14.95	15		14.95	_	
		5.0	$V_{out} = 4.5 \text{ or } 0.5 \text{V}$	_	1.5	_	2.25	1.5	-	1.5	v
	VIL	10	$V_{out} = 9.0 \text{ or } 1.0 \text{V}$	-	3.0	_	4.50	3.0	-	3.0	
Input Voltage		15	$V_{out} = 13.5 \text{ or } 1.5 \text{V}$		4.0		6.75	4.0		4.0	
input voitage		5.0	$V_{\rm out} = 0.5$ or 4.5V	3.5	_	3.5	2.75		3.5		v
	VIH	10	V _{sut} =1.0 or 9.0V	7.0	_	7.0	5.50		7.0		
		15	$V_{\text{out}} = 1.5 \text{ or } 13.5 \text{V}$	11.0	_	11.0	8.25		11.0	_	
	Іон	5.0	$V_{OH}=2.5V$	-1.0	_	-0.8	-1.7	-	-0.6	_	mA
		5.0	V _{OH} =4.6V	-0.2	_	-0.16	-0.36	_	-0.12	_	
		10.	V _{он} =9.5V	-0.5		-0.4	-0.9		-0.3	-	
Output Drive Current		15	V _{OH} =13.5V	-1.4	_	-1.2	-3.5	_	-1.0	-	
	IoL	5.0	$V_{oL}=0.4V$	0.52	_	0.44	0.88		0.36	_	mA
		10	Vor-0.5V	1.3		1.1	2.25		0.9	_	
		15	VoL-1.5V	3.6	_	3.0	8.8	_	2.4	1	
Input Current	Iin.	15		_	±0.3	_	±0.00001	±0.3	1	±1.0	μA
Input Capacitance	Ci.	-	$V_{in}=0$	_	_	_	5.0	7.5	_	_	рF
	I_{DD}	5.0	Zero Signal, per Package		50	_	0.010	50	1	375	μA
Quiescent Current		19		_	100	_	0.020	100	_	750	
		15			200		0.030	200	_	1500	
-	I_{T}	5.0	Dynamic + IDD,	_	_	_	1.15	_	_		
Total Supply Current*		10	per Gate	_		_	2.3		_		μA
		15	$C_L = 50 \mathrm{pF}$, $f = 1 \mathrm{kHz}$	_	_	_	3.55		_	_	

^{*} To calculate total supply current at frequency other than 1kHz.


POWER DISSIPATION TEST CIRCUIT AND WAVEFORM



■ SWITCHING CHARACTERISTICS $(C_L = 50 \text{pF}, T_a = 25 ^{\circ}\text{C})$

Characteristic		Symbol	$V_{DD}(V)$	min	typ	max	Unit
	t.	5.0		180	400		
Output Rise Time		10	-	90	200	ns	
		15	_	65	160		
Output Fall Time		ŧ,	5.0	_	120	250	ns
			10	_	60	125	
•			15		40	100	1
	Cl. 1 O		5.0		1800	5400	ns μs
	Clock to Q	tpin,	10	_	650	2000	
	(Pin 6 High)		15	-	450	1500	
			5.0		3.8	12	
	Clock to Q		10	_	1.5	4.5	
Propagation Delay Time	(Pin 6 Low)		15	-	1.1	3.5	
Fropagation Delay Time	Clock to Q16		5.0	_	7.0	21	
			10	_	3.0	9.0	
	*		15		2.2	7.0	
		tpHL	5.0	_	1500	4500	ns
	Reset to Q.		10	_	600	1800	
			15	_	450	1400	
			5.0	900	300	_	
Clock Pulse Width		PW_c	10	300	100		ns
			15	255	85	_]
			5.0	_	1.2	0.4	
Clock Frequency	PRF	10		3.0	1.5	MHz	
		15		5.0	2.0	1	
	t_n t_f	5.0	No Limit		•		
Clock Pulse Rise and Fall Time		10			}		
		15					
			5.0	1500	500		
Reset Pulse Width	PW_R	10	600	200		ns	
			15	450	150		

■ SWITCHING TIME TEST CIRCUIT

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor

HITACH

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica http:semiconductor.hitachi.com/ Europe http://www.hitachi-eu.com/hel/ecg

Asia (Singapore) http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Taiwan) Asia (HongKóng) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

Japan http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose, CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road

Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia I td Taipei Branch Office

3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsu Kowloon, Hong Kong

Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.