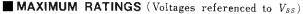
WW.DZSC.COM 24/小时加急

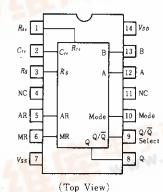
出货

Programmable Oscillator/Timer


The HD14541B programmable timer consists of a 16-stage binary counter, an integrated oscillator for use with an external capacitor and two resistors, an automatic power-on reset circuit, and output control logic. Timing is initialized by turning on power, whereupon the power-on reset is enabled and initializes the counter, within the specified V_{DD} range. With the power already on, an external reset pulse can be applied. Upon release of the initial reset command, the oscillator will oscillate with a frequency determined by the external RC network. The 16-stage counter divides the oscillator frequency (f_{osc}) with the nth stage frequency being $f_{osc}/2^n$.

FEATURES

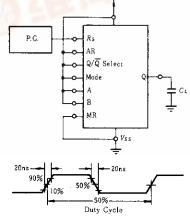
- Available Outputs 2^8 , 2^{10} , 2^{13} or 2^{16}
- Increments on Positive Edge Clock Transitions
- Low Symmetrical Output Resistance (typically $100\Omega @15V$)
- Built-in Low Power RC Oscillator (±2% accuracy over temperature range and $\pm 10\%$ supply and $\pm 3\%$ over processing @ < 10 kHz)
- Oscillator Frequency Range = DC to 100kHz
- Oscillator May Be Bypassed if External Clock is Available (Apply external clock to Pin 3)
- Automatic Reset Initializes All Counters When Power Turns On (Limits-Vpn from 8.5V to 18V when enabled)
- External Master Reset Totally Independent of Automatic Reset Operation
- Operates as 2^n Frequency Divider or Single Transition Timer
- Q/Q Select Provides Output Logic Level Flexibility
- Reset (auto or master) Disables Oscillator During Resetting to Provide No Active Power Dissipation
- Clock Conditioning Circuit Permits Operation with Very Slow Clock Rise and Fall Times WWW.DZSC.COM
- Supply Voltage Range = 3 to 18V



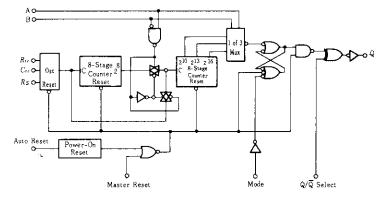
Characteristic	Symbol	Value	Unit	
DC Supply Voltage	VDD	$-0.5 \sim +18$	V	
Input/Output Voltage	Vin, Voul	$-0.5 \sim V_{DD} + 0.5$	v	
DC Current Drain per Input Pin	Lin	±10	mA	
DC Current Drain per Output Pin	Іол, Іон	± 45	mA	
Operating Temperature Range	TA	-40~+85	ĩ	
Storage Temperature Range	Tata	-65~+150	°C	
Power Dissipation	PD	300	mW	

PIN ARRANGEMENT

TRUTH TABLE


Pin	State				
Fin	0	1			
5	Auto Reset Operating	Auto Reset Disabled			
6	Timer Operational	Master Reset ON			
9	Output Initially Low After Reset	Output Initially High After Reset			
10	Single Cycle Mode	Recycle Mode			

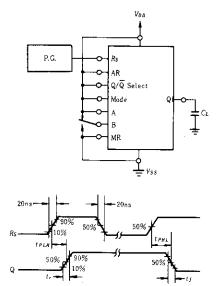
FREQUENCY SELECTTION TABLE


A	в	Number of Counter Stages	Count 2 ⁿ
0	0	13	8192
0	1	10	1024
1	0	8	256
1	1	16	65536

POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

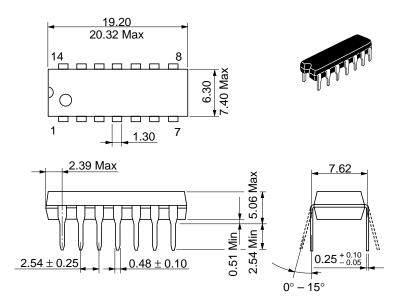
BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS


Characteristic	Symbol		Test Conditions	-4	0°C		25°C		8	5°C	Unit
Characteristic	Сушьог	$V_{DD}(V)$	Test Conditions	min	max	min	typ	max	min	max	Unit
		5.0	$V_{in} = V_{DD}$ or 0	-	0.05		0	0.05		0.05	V.
	Vol	10		-	0.05	—	0	0.05	-	0.05	
Output Voltage		15			0.05	—	0	0.05	_	0.05	
output fortage		5.0		4.95	—	4.95	5.0	_	4.95	—	
	Voн	10	$V_{in} = 0$ or V_{DD}	9.95	-	9.95	10	-	9.95	_	v
		15		14.95	—	14.95	15		14.95	—	
		5.0	$V_{out} = 4.5 \text{ or } 0.5 \text{ V}$	-	1.5	-	2.25	1.5		1.5	v
	VIL	10	$V_{out} = 9.0 \text{ or } 1.0 \text{ V}$		3.0		4.50	3.0	—	3.0	
Input Voltage		15	$V_{out} = 13.5$ or $1.5 \mathrm{V}$	-	4.0	—	6.75	4.0	_	4.0	
input voltage		5.0	$V_{oxi} = 0.5 \text{ or } 4.5 \text{ V}$	3.5		3.5	2.75		3.5		v
	V _{IH}	10	$V_{out} = 1.0 \text{ or } 9.0 \text{ V}$	7.0		7.0	5.50	_	7.0	_	
		15	$V_{out} = 1.5$ or $13.5 V$	11.0	· —	11.0	8.25	—	11.0	—	
	- · · · ·	5.0	$V_{OH} = 2.5 \mathrm{V}$	-5.1		-4.27	-12.83		-3.5	-	mA
	Іон	10	$V_{OH} = 9.5 \mathrm{V}$	-2.69		-2.25	-6.75	_	-1.85		
0		15	$V_{0H} = 13.5 \mathrm{V}$	-10.5	—	-8.8	-26.33		-7.22		
Output Drive Current		5.0	$V_{OL} = 0.4 \mathrm{V}$	1.24	-	1.04	3,12	-	0.85		mA
	Ioz	10	$V_{0L} = 0.5 V$	3.18	_	2.66	8.0	_	2.18	_	
		15	$V_{0L} = 1.5 \mathrm{V}$	12.4		10.4	31.2	. <u>-</u>	8.50		
Input Current	Iin	15			±0.3		±0.00001	±0.3	—	± 1.0	μA
Input Capacitance	Cin		$V_{in} = 0$	-		_	5.0	7.5	_	-	pF
		5.0	Zero Signal, per Package	-	20	-	0.005	20	_	150	
Quiescent Current	IDD	10		_	40		0.010	40	-	300	μA
		15 per		_	80	-	0.015	80		600	
Auto Resct Quiescent Current	ļ	5.0		-	200		7	200		1200	. μA
	IDDR	10	Pin 5 is low		250		30	250	-	1500,	
		15			500	- 1	82	500	-	2000	
Total Supply Current*	Ιτ	5.0	Dynamic +IDD,	-	- 1	_	0.4	-	_	-	
		10	per Gate	—	-	-	0.8	_		—	μA
		15	$C_L = 50 \text{pF}, f = 1 \text{kHz}$		-	-	1.2	_	_	-]

* To calculate total supply current at frequency other than 1kHz.

 $@V_{DD} = 5.0V I_{7} = (0.4 \ \mu A/kHz)f + I_{00}, @V_{DD} = 10V I_{7} = (0.8 \ \mu A/kHz)f + I_{DD}, @V_{DD} = 15V I_{7} = (1.2 \ \mu A/kHz)f + I_{DD}, @V_{DD} = 15V I_{7} = (1.2 \ \mu A/kHz)f + I_{DD}, @V_{DD} = 10V I_{7} = (1.2 \ \mu A/kHz)f + I_{DD}, @V_{DD} = 10V I_{7} = (1.2 \ \mu A/kHz)f + I_{DD}, @V_{DD} = 10V I_{7} = (1.2 \ \mu A/kHz)f + I_{DD}, @V_{DD} = 10V I_{7} = (1.2 \ \mu A/kHz)f + I_{DD}, @V_{DD} = 10V I_{7} = (1.2 \ \mu A/kHz)f + I_{DD}, @V_{DD} = 10V I_{7} = (1.2 \ \mu A/kHz)f + I_{DD}, @V_{DD} = 15V I_{7} = (1.2 \ \mu A/kHz)f + I_{DD}, @V_{DD} = 10V I_{7} = (1.2 \ \mu A/kHz)f + I_{DD}, @V_{DD} = (1.2 \ \mu A/kHz)f + I_{DD}, @V_{D$


SWITCHING TIME TEST CIRCUIT

·...

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}$, $Ta = 25^{\circ}\text{C}$)

Charac	teristic	Symbol	$V_{DD}(\mathbf{V})$	min	typ	тах	Unit
Output Rise Time		t,	5.0		180	400	ns
			10	_	90	200	
			15	_	65	160	
			5.0	_	100	200	
Output Fall Time		t_f	10	_	50	100	ns
			15	_	37	80	
			5.0	—	3.5	10.5	
	Clock to Q (2 ⁸ Output)		10	_	1.25	3.8	
Propagation Delay Time		tpln,	15	_	0.9	2.9]
Tropagation Delay Thire		t _{PHL}	5.0	_	6.0	18	_ μs
	Clock to $Q(2^{16} \text{ Output})$		10	_	3.5	10	
	<i>n</i>		15	—	2.5	7.5	
Clock Pulse Width			5.0	900	300	—	ns
		PW_c	10	300	100		
······			15	225	85	-	1
Clock Frequency			5.0	_	1.5		
		PRF	10	-	4.0		MHz
			15	_	6.0		1
Minimum Master Reset Pulse Width			5.0	900	300		
		PWMR	10	300	100	-	_ns
			15	225	85	_	1

Unit: mm

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI

Hitachi, Ltd.

URL

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

NorthAmerica	:	http
Europe	:	http
Asia (Singapore)	:	http
Asia (Taiwan)	:	http
Asia (HongKóng)	:	http

http:semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm http://www.hitachi.com.hk/eng/bo/grp3/index.htm

: http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Japan

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose, CA 95134 Tel: <1> (408) 433-1990 Fax: <1> (408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsu Kowloon, Hong Kong Tel: .4852- (2) 735 9218 Fax: .4852- (2) 730 0281 Telex: .40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.

HITACHI