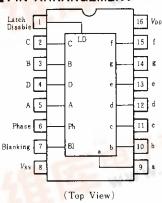

BCD-to-Seven Segment Latch/Decoder/Driver

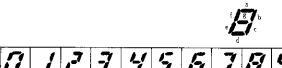
The HD14543B BCD-to-seven segment latch/decoder/driver is designed for use with liquid crystal readouts. The circuit provides the functions of a 4-bit storage latch and an 8421 BCD-to-seven segment decoder and driver. The device has the capability to invert the logic levels of the output combination. The phase (Ph), blanking (BI), and latch disable (LD) inputs are used to reverse the truth table phase, blank the display, and store a BCD code, respectively. For liquid crystal (LC) readouts, a square wave is applied to the Ph input of the circuit and the electrically common backplane of the display, the outputs of the circuit are connected directly to the segments of the LC readout. For other types of readouts, such as light-emitting diode (LED), incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet. Applications include instrument (e.g., counter, DVM etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.


■ FEATURES

- Logic Circuit Quiescent Current = 5nA/pkg typ. @5V
- · Latch Storage of Code
- Blanking Input
- Readout Blanking on All Illegal Input Combinations
- Direct LED (Common Anode or Cathode) Driving Capability
- Supply Voltage Range = 3 to 18V
- Capable of Driving One Low-power Schottky TTL Load Over the Rated Temperature Range

1 0010 DIA 0DA 14

PIN ARRANGEMENT



MAXIMUM RATINGS (Voltages referenced to V_{SS})

Characteristic	Symbol	Vaiue	Unit
DC Supply Voltage	$V_{\scriptscriptstyle DD}$	-0.5~+18	V
Input/Output Voltage	Vin, Vout	$-0.5 \sim V_{PD} + 0.5$	V
DC Current Drain per Input Pin	Ii.	±10	mA
Maximum Output Drive Current	IOH max IOL max	±10	mА
Maximum Continuous Output Power*	Pormax Pormax	70	mW
Power Dissipation	P_{D}	300	mW
Operating Temperature Range	T _A	-40~+85	°C
Storage Temperature Range	Tate	-65~+150	ొ

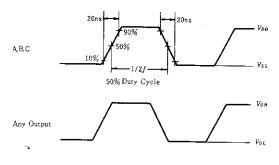
^{*} $P_{\text{OH}} \max = I_{\text{OH}}(V_{\text{OH}} - V_{\text{DB}}), P_{\text{OL}} \max = I_{\text{OL}}(V_{\text{OL}} - V_{\text{SS}})$

■ TRUTH TABLE

Inputs						Outputs								
LD	ΒI	Ph*	D	С	В	Α	a	ь	С	d	e	f	g	Disply
×	1	0	×	×	×	×	0	0	0	0	0	0	0	Blank
1	0	0	0	θ	0	0	1	1	1	1	1	1	0	0
1	0	0	0	0	0	1.	0	1	1	0	0	0	0	1
I	0	0	0	0	1	0	1	1	0	1	1	0	1	2
1	0	0	0	0	1	1	1	1	1	1	0	0	1	. 3
1	0	0	0	1	0	O	0	1	1	0	0	1	1	4
I	0	0	0	1	0	1	1	0	1	1	0	1	1	5
1	0	0	0	1	1	0	1	0	1	1	1	1	1	6
1	0	0	0	1	1	1	1	1	1	0	0	0	0	7
1	0	0	1	0	0	0	1	1	1	1	1	1	1	8
1	0	0	1	0	0	1	1	1 -	1	1	0	1	1	9
1	0	0	1	0	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	0	1	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	0	1	0	0	0	0	0	0	0	Blank
1	0	0	1	1	1	0	0	0	0	0	0	0	0	Blank
1	0	0	1	1	I	l	0	0	0	0	0	0	0	Blank
0	0	0	×	×	×	х	**						*	

^{× :} Don't Care

■ ELECTRICAL CHARACTERISTICS


		_								_		
Characteristic S	Symbol	Test Conditions	-4	-40°C		25 ℃		85°C		Unit		
Character istic	Dymovi	$V_{DD}(V)$	rest Conditions	min	max	min	typ	max	min	max	Unit	
Output Voltage		5.0			0.05		0	0.05	_	0.05	v	
	Vol	10	$V_{i\pi} = V_{DD}$ or 0	_	0.05		0	0.05	-	0.05		
		15		-	0.05	_	0	0.05	_	0.05		
		5.0		4.95	_	4.95	5.0	-	4.95	_		
	V_{OH}	10	$V_{in}=0$ or V_{DD}	9.95		9.95	10	_	9.95	-	v	
		15] · [14.95		14.95	15	-	14.95	_		
		5.0	$V_{\rm out} = 4.5$ or $0.5 \mathrm{V}$		1.5		2.25	1.5		1.5		
	V_{IL}	10	$V_{out} = 9.0 \text{ or } 1.0 \text{ V}$	-	3.0	_	4.50	3.0	_	3.0	v	
Input Voltage		15	$V_{\rm out} = 13.5 \text{ or } 1.5 \text{ V}$	-	4.0	_	6.75	4.0	_	4.0		
input Fortage		5.0	$V_{aut} = 0.5 \text{ or } 4.5 \text{ V}$	3.5	_	3.5	2.75	-	3.5			
	V_{IH}	10	$V_{out} = 1.0 \text{ or } 9.0 \text{ V}$	7.0	_	7.0	min typ max min m — 0 0.05 — 0 — 0 0.05 — 0 — 0 0.05 — 0 4.95 5.0 — 4.95 9.95 14.95 15 — 14.95 — — 2.25 1.5 — — — 4.50 3.0 — — — 6.75 4.0 — 3.5 — 7.0 5.50 — 7.0 — — 11.0 8.25 — 11.0 —	_	v			
		15	$V_{out} = 1.5$ or $13.5 \mathrm{V}$	11.0	_	11.0	8.25	_	11.0		ı	
		5.0	$V_{OH} = 2.5 \text{ V}$	-1.0	_	-0.8	-1.7	_	-0.6		mA	
		5.0	$V_{OH}=4.6\mathrm{V}$	-0.2	_	-0.16	-0.36	_	-0.12	_		
	I_{OH}	10	$V_{OH} = 0.5 \mathrm{V}$	-	_	_	-8.7	_	_			
		10	$V_{OH} = 9.5 \text{ V}$	-0.5		-0.4	-0.9		-0.3			
Output Drive Current		15	$V_{OH}=13.5\mathrm{V}$	-1.4	_	-1.2	-3.5	_	-1.0			
		5.0	$V_{OL} = 0.4 \mathrm{V}$	0.52	. –	0.44	0.88	_	0.36	_		
	Ial	10	$V_{OL} = 0.5 \mathrm{V}$	1.3	_	1,1	2.25		0.9			
	101	10	$V_{0L} = 9.5 \mathrm{V}$	_		_	10.1		_		mA	
		15	$V_{OL} = 1.5 \text{ V}$	3.6		3.0	8.8		2.4			
Input Current	Iin	15		_	±0.3	_	±0.00001	±0.3	_	±1.0	μA	
Input Capacitance	Cin		$V_{in}=0$	_	_		5.0	7.5	_	_	βF	
		5.0	Zero Signal,	_	20	-	0.005	20	_	150		
Quiescent Current	I_{DD}	10	per Package	_	40	_	0.010	40	_	300	μA	
		15	per rackage		80		0.015	80		600		
		5.0	Dynamic $+I_{DD}$,	_		_	1.6	_	_	_	μA	
Total Supply Current*	I_T	10	per Gate	_	_		3.1	-	_			
		15 $C_L = 50 \mathrm{pF}, \ f = 1 \mathrm{kHz}$	_	_		4.7	_	-	_	1		

^{*} To calculate total supply current at frequency other than 1kHz. $@V_{00} = 5.0 \text{ V} \quad I_{7} = (1.6 \, \mu\text{A/kHz}) \\ f + I_{00}, \quad @V_{00} = 10 \text{ V} \quad I_{7} = (3.1 \, \mu\text{A/kHz}) \\ f + I_{00}, \quad @V_{00} = 15 \text{ V} \quad I_{7} = (4.7 \, \mu\text{A/kHz}) \\ f + I_{00}, \quad &I_{10} = (4.7 \, \mu\text{A/kHz}) \\ f + I_{10} = (4.7 \, \mu\text{A/kHz}) \\ f + I_{1$

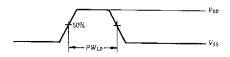
^{* :} For liquid crystal readouts, apply a square wave to Ph. For common cathode LED readouts, select Ph=0. For common anode LED readouts, select Ph=1

**: Depends upon the BCD coder previously applied when LD-1

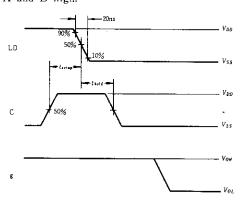
● Dynamic Power Dissipation Signal Waveforms

- Note) 1. Input Bl and Ph low, and Inputs D and LD high.
 - $\mathbf{2}$. f in respect to a system clock.
 - 3. All outputs connected to respective C_L loads.

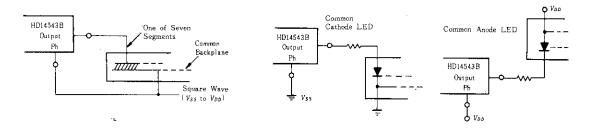
SWITCHING CHARACTERICS ($C_L = 50 \,\mathrm{pF}$, $T_a = 25 \,^{\circ}\mathrm{C}$)

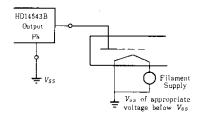

Characteristic	Symbol	$V_{\mathcal{D}\mathcal{D}}(\mathbf{V})$	min	typ	max	Unit
		5.0	_	180	400	ns
Output Rise Time	t,	10	_	90	200	
· · · · · · · · · · · · · · · · · · ·		15	_	65	160	
		5.0		120	250	ns
Output Fall Time	t_f	10		60	125	
		15		40	100	
		5.0	_	605	1650	ns
	tplH	10		250	660	
Propagation Delay Time		15		185	495	
Total Columnia Column		5.0		505	1650	ns
	tpHL	10		205	660	
		15		155	495	
		5.0	80	-40		
Setup Time	t _{antup}	10	30	-15	_	
		15	20	-10	_	
		5.0	120	40	-	ns
Hold Time	thore	10	45	15		
		15	30	10		
		5.0	375	125		
Latch Disable Pulse Width (Strobing Data)	PW_{LD}	10	150	50	_	ns
	İ	15	120	40		

●DYNAMIC SIGNAL WAVEFORMS


a) Inputs D, Ph, and BI low, and Inputs A, B, and LD high

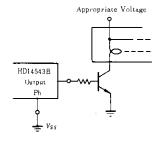
c) Data DCBA strobed into latches

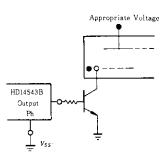

b) Inputs D, Ph, and BI low, and Inputs A and B high.

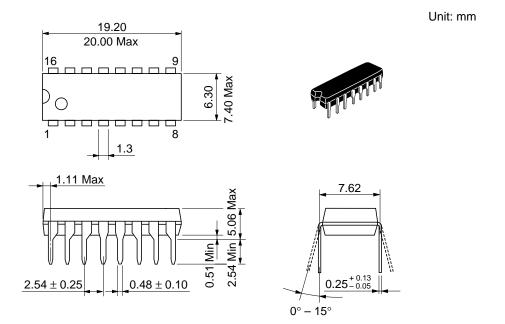

■ CONNECTIONS TO VARIOUS DISPLAY READOUTS

•LCD

• LED




•Fluorescent Readout



●Incandescent Readout

●Gas Discharge Readout

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor

HITACH

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL NorthAmerica http:semiconductor.hitachi.com/ Europe http://www.hitachi-eu.com/hel/ecg

Asia (Singapore) http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Taiwan) Asia (HongKóng) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

Japan http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose, CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany

Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road

Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia I td Taipei Branch Office

3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsu Kowloon, Hong Kong

Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.