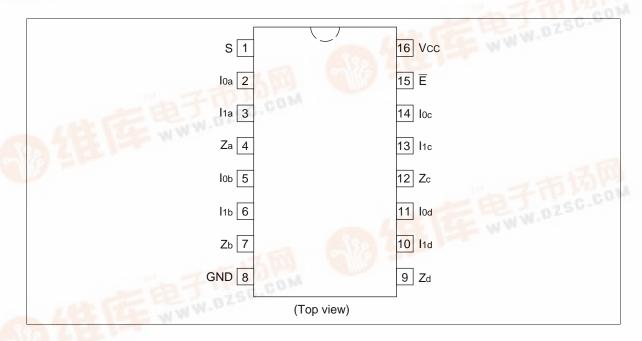
HD74AC157

Quad 2-Input Multiplexer

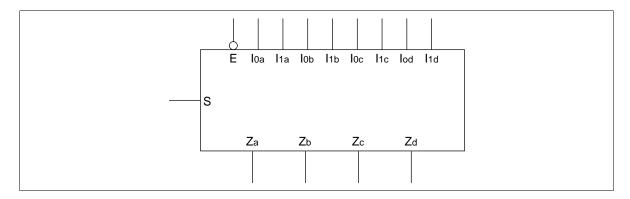
HITACHI


Description

The HD74AC157 is a high-speed quad 2-input multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four outputs present the selected data in the true (noninverted) form. The HD74AC157 can also be used as a function generator.

Feature

Outputs Source/Sink 24 mA


Pin Arrangement

HD74AC157

Logic Symbol

Pin Names

 I_{0a} to I_{0d} Source 0 Data Inputs

 I_{1a} to I_{1d} Source 1 Data Inputs \overline{E} Enable Input

 $\begin{array}{ll} \overline{E} & & \text{Enable Input} \\ S & & \text{Select Input} \\ \overline{Z}_a \text{ to } \overline{Z}_d & \text{Outputs} \end{array}$

Functional Description

The HD74AC157 is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input (\overline{E}) is active-Low. when \overline{E} is High, all of the outputs (Z) are forced Low regardless of all other inputs. The HD74AC157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

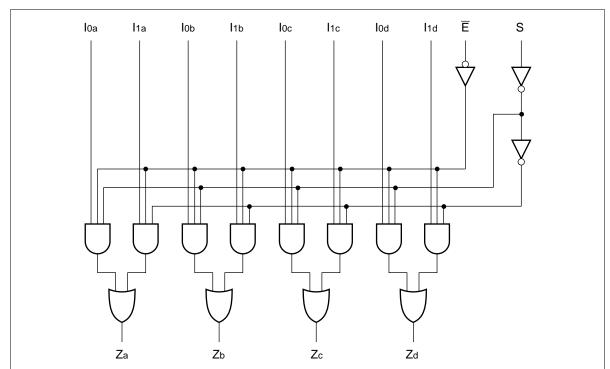
$$Z_a = \overline{E} {\color{red}\bullet} (I_{1a} {\color{red}\bullet} S + I_{0a} {\color{red}\bullet} \overline{S})$$

$$Z_{\scriptscriptstyle b} = \overline{E} {\scriptstyle \bullet} (I_{\scriptscriptstyle 1b} {\scriptstyle \bullet} S + I_{\scriptscriptstyle 0b} {\scriptstyle \bullet} \overline{S})$$

$$Z_c = \overline{E} {\color{red} \bullet} (I_{1c} {\color{red} \bullet} S + I_{0c} {\color{red} \bullet} \overline{S})$$

$$Z_{\text{d}} = \overline{E} \bullet (I_{1\text{d}} \bullet S + I_{0\text{d}} \bullet \overline{S})$$

A common use of the HD74AC157 is the moving of data from two groups of register to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The HD74AC157 can generate any four of the sixteen different functions of two variables with one variable common. This is useful for implementing gating functions.


Truth Table

Inputs		Output			
E	S	I _o	I ₁	Z	
Н	Х	X	Х	L	
L	Н	Х	L	L	
L	Н	Х	Н	Н	
L	L	L	X	L	
L	L	Н	Х	Н	

H: High Voltage LevelL: Low Voltage Level

X: Immaterial

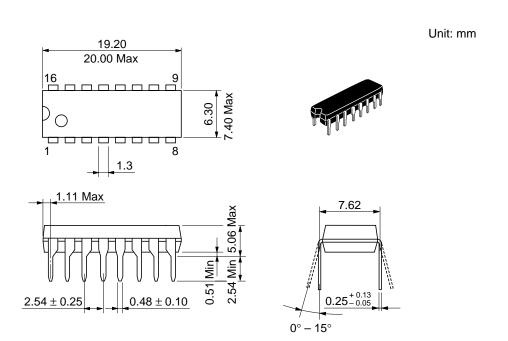
Logic Diagram

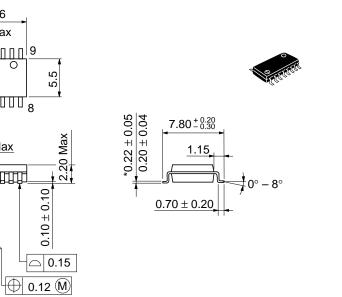
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

HD74AC157

DC Characteristics (unless otherwise specified)

Item	Symbol	Max	Unit	Condition
Maximum quiescent supply current	I _{cc}	80	μΑ	$V_{IN} = V_{CC}$ or ground, $V_{CC} = 5.5 \text{ V}$, Ta = Worst case
Maximum quiescent supply current	I _{cc}	8.0	μΑ	$V_{IN} = V_{CC}$ or ground, $V_{CC} = 5.5 \text{ V}$, Ta = 25°C


AC Characteristics: HD74AC157


			$Ta = +25^{\circ}C$ $C_{L} = 50 \text{ pF}$			Ta = -40° C to $+85^{\circ}$ C C _L = 50 pF		
Item	Symbol	V _{cc} (V)*1	Min	Тур	Max	Min	Max	Unit
Propagation delay	t _{PLH}	3.3	1.0	7.0	11.5	1.0	13.0	ns
S to Z _n		5.0	1.0	5.5	9.0	1.0	10.0	
Propagation delay	t _{PHL}	3.3	1.0	6.5	11.0	1.0	12.0	ns
S to Z _n		5.0	1.0	5.0	8.5	1.0	9.5	
Propagation delay	t _{PLH}	3.3	1.0	7.0	11.5	1.0	13.0	ns
\overline{E} to $Z_{\scriptscriptstyle n}$		5.0	1.0	5.5	9.0	1.0	10.0	
Propagation delay	t _{PHL}	3.3	1.0	6.5	11.0	1.0	12.0	ns
\overline{E} to $Z_{\scriptscriptstyle n}$		5.0	1.0	5.5	9.0	1.0	9.5	
Propagation delay	t _{PLH}	3.3	1.0	5.0	8.5	1.0	9.0	ns
I_n to Z_n		5.0	1.0	4.0	6.5	1.0	7.0	
Propagation delay	t _{PHL}	3.3	1.0	5.0	8.0	1.0	9.0	ns
I_n to Z_n		5.0	1.0	4.0	6.5	1.0	7.0	

Note: 1. Voltage Range 3.3 is 3.3 V \pm 0.3 V Voltage Range 5.0 is 5.0 V \pm 0.5 V

Capacitance

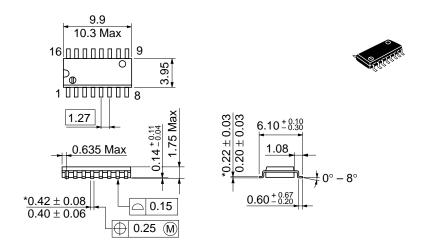
Item	Symbol	Тур	Unit	Condition	
Input capacitance	C _{IN}	4.5	pF	$V_{cc} = 5.5 \text{ V}$	
Power dissipation capacitance	$C_{\mathtt{PD}}$	50.0	pF	$V_{CC} = 5.0 \text{ V}$	

10.06 10.5 Max 16 7 7 9

1 00000008

0.80 Max

1.27


 $^{*}0.42 \pm 0.08$ 0.40 ± 0.06

5.5

 $\boldsymbol{0.10 \pm 0.10}$

Unit: mm

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HTACH

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

NorthAmerica http:semiconductor.hitachi.com/

Europe Asia (Singapore) Asia (Taiwan) Asia (HongKong) http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm http://www.hitachi.com.hk/eng/bo/grp3/index.htm

Japan http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany

Tel: <49 > (89) 9 9180-0 Fax: <49> (89) 9 29 30 00

Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead

Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office

3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218

Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.