

捷多邦,专业PCB打样工厂,24小时加急出货 HVV-65262/883

16K x 1 Asynchronous CMOS Static RAM

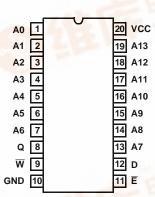
March 1997

Features

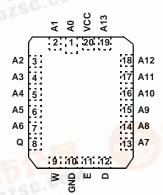
- This Circuit is Processed in Accordance to MIL-STD-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Data Retention at 2.0V......20μA Max
- TTL Compatible Inputs and Outputs
- JEDEC Approved Pinout
- No Clocks or Strobes Required
- Temperature Range +55°C to +125°C
- Gated Inputs-No Pull-Up or Pull-Down Resistors Required
- Equal Cycle and Access Time
- Single 5V Supply

Description

The HM-65262/883 is a CMOS 16384 x 1-bit Static Random Access Memory manufactured using the Intersil Advanced SAJI V process. The device utilizes asynchronous circuit design for fast cycle times and ease of use. The HM-65262/883 is available in both JEDEC Standard 20 pin, 0.300 inch wide CERDIP and 20 pad CLCC packages, providing high board-level packing density. Gated inputs lower standby current, and also eliminate the need for pull-up or pull-down resistors.

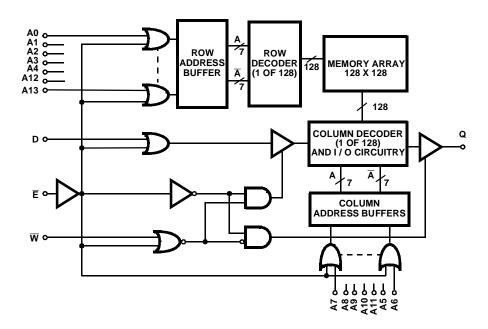

The HM-65262/883, a full CMOS RAM, utilizes an array of six transistor (6T) memory cells for the most stable and lowest possible standby supply current over the full military temperature range. In addition to this, the high stability of the 6T RAM cell provides excellent protection against soft errors due to noise and alpha particles. This stability also improves the radiation tolerance of the RAM over that of four transistor (4T) devices.

Ordering Information


70ns/20 μ A	85ns/20μA	85ns/400μA	TEMP. RANGE	PACKAGE	PKG. NO.
100	HM1-65262/883	-	-55°C to +125°C	CERDIP	F20.3
HM4-65262B/883	HM4-65262/883	-	-55°C to +125°C	CLCC	J20.C

Pinouts

HM1-65262/883 (CERDIP) TOP VIEW


HM-65262 (CLCC) TOP VIEW

A0 - A13	Address Input
Ē	Chip Enable/Power Down
Q	Data Out
D	Data In
VSS/GND	Ground
VCC	Power (+5)
W	Write Enable

Functional Diagram

Absolute Maximum Ratings

Thermal Information

Thermal Resistance (Typical)	$\theta_{\sf JA}$	θ JC
CERDIP Package	66°C/W	13°C/W
CLCC Package	75 ⁰ C/W	18 ⁰ C/W
Maximum Storage Temperature Range	6	5°C to +150°C
Maximum Junction Temperature		+175°C
Maximum Lead Temperature (Soldering 10s)		+300°C

Die Characteristics

Gate Count		26256	Gates
------------	--	-------	-------

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range	Input High Voltage (VIH)±2.2V to VCC
Operating Temperature Range55°C to +125°C	Data Retention Supply Voltage 2.0V to 4.5V
Input Low Voltage	Input Rise and Fall Time

TABLE 1. HM-65262/883 DC ELECTRICAL PERFORMANCE SPECIFICATIONS

Device Guaranteed and 100% Tested

DC PARAMETER	SYMBOL	(NOTE 1) CONDITIONS	GROUP A SUB-GROUPS	TEMPERATURE	MIN	MAX	UNITS
High Level Output Voltage	VOH1	VCC = 4.5V, IO = -4.0mA	1, 2, 3	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	2.4	-	V
Low Level Output Voltage	VOL	VCC = 4.5V, IO = 8.0mA	1, 2, 3	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	-	0.4	V
High Impedance Output Leakage Current	IOZ	VCC = 5.5V, \overline{E} = 5.5V, VO = GND or VCC	1, 2, 3	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	-1.0	1.0	μА
Input Leakage Current	II	VCC = 5.5V, VI = GND or VCC	1, 2, 3	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	-1.0	1.0	μΑ
Standby Supply Current	ICCSB1	VCC = 5.5V, IO = 0mA, \overline{E} = VCC -0.3V	1, 2, 3	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	-	50	μΑ
Standby Supply Current	ICCSB	VCC = 5.5V, IO = 0mA, \overline{E} = 2.2V	1, 2, 3	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	-	5	mA
Operating Supply Current	ICCOP	VCC = 5.5V, (Note 2), $f = 1MHz$, $\overline{E} = 0.8V$	1, 2, 3	$-55^{o}C \le T_{A} \le +125^{o}C$	-	50	mA
Data Retention Supply Current	ICCDR	$VCC = 2.0V$, $IO = 0mA$, $\overline{E} = VCC$ -0.3V	1, 2, 3	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	-	20	μΑ
Enable Supply Current	ICCEN	VCC = 5.5V, IO = 0mA, \overline{E} = 0.8V	1, 2, 3	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	-	50	mA
Functional Test	FT	VCC = 4.5V (Note 3)	7, 8A, 8B	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	-	-	-

NOTES:

- 1. All voltages referenced to device GND.
- 2. Typical derating 1.5mA/MHz increase in ICCOP.
- 3. Tested as follows: f = 2MHz, VIH = 2.4V, VIL = 0.4V, IOH = -4.0mA, IOL = 4.0mA, VOH \geq 1.5V, and VOL \leq 1.5V.

TABLE 2. HM-65262/883 AC ELECTRICAL PERFORMANCE SPECIFICATIONS

Device Guaranteed and 100% Tested

		(NOTES 1, 2)	GROUP A SUB-			M- 2B/883 IITS		262/883 IITS	
AC PARAMETER	SYMBOL	CONDITIONS	GROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Read/Write/Cycle Time	(1) TAVAX	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	70	-	85	-	ns
Address Access Time	(2) TAVQV	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	-	70	-	85	ns

TABLE 2. HM-65262/883 AC ELECTRICAL PERFORMANCE SPECIFICATIONS (Continued)

Device Guaranteed and 100% Tested

		(NOTES 1, 2)	GROUP A SUB-		65262	M- 2B/883 IITS		262/883 IITS	
AC PARAMETER	SYMBOL	CONDITIONS	GROUPS	TEMPERATURE	MIN	MAX	MIN	MAX	UNITS
Chip Enable to End of Write	(3) TELWH	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	55	-	65	-	ns
Chip Enable Access Time	(4) TELQV	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	-	70	-	85	ns
Address Hold Time	(5) TWHAX	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	0	-	0	-	ns
Address Setup Time	(6) TAVWL	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	0	-	0	-	ns
Address Valid to End of Write	(7) TAVWH	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	55	-	65	-	ns
Address Setup Time	(8) TAVEL	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	0	-	0	-	ns
Address Hold Time	(9) TEHAX	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{o}C \le T_{A} \le +125^{o}C$	0	-	0	-	ns
Address Valid to End of Writes	(10) TAVEH	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	55	-	65	-	ns
Write Enable Pulse Write	(11) TWLWH	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	40	-	45	-	ns
Data Setup Time	(12) TDVWH	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	30	-	35	-	ns
Data Hold Time	(13) TWHDX	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	0	-	0	-	ns
Enable Pulse Width	(14) TELEH	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	55	-	65	-	ns
Write to End of Write	(15) TWLEH	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	40	-	45	-	ns
Data Setup Time	(16) TDVEH	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	30	-	35	-	ns
Data Hold Time	(17) TEHDX	VCC = 4.5V and 5.5V	9, 10, 11	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	0	-	0	-	ns

NOTES:

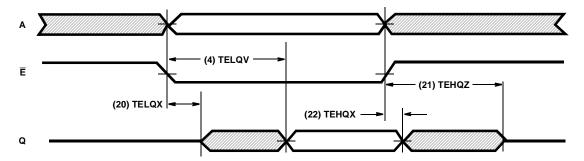
- 1. All voltages referenced to device GND.
- 2. Input pulse levels: 0.8V to VCC -2.0V; Input rise and fall times: 5ns (max); Input and output timing reference level: 1.5V; Output load: 1 TTL gate equivalent, CL = 50pF (min) for CL greater than 50pF, access time is derated by 0.15ns per pF.
- 3. TAVQV = TELQV + TAVEL.

TABLE 3. HM-65262/883 ELECTRICAL PERFORMANCE SPECIFICATIONS, AC AND DC

	(NOTE 1)			LIMITS		•	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Capacitance	CIN	VCC = Open, f = 1MHz, All Measurements Refer- enced To Device Grounds	1, 2	$T_A = +25^{\circ}C$	-	10	pF
		VCC = Open, f = 1MHz, All Measurements Refer- enced To Device Grounds	1, 3	T _A = +25°C	-	6	pF
Output Capacitance	СО	VCC = Open, f = 1MHz, All Measurements Refer- enced To Device Grounds	1, 2	$T_A = +25^{\circ}C$	-	12	pF
		VCC = Open, f = 1MHz, All Measurements Refer- enced To Device Grounds	1, 3	$T_A = +25^{\circ}C$	-	8	pF

TABLE 3. HM-65262/883 ELECTRICAL PERFORMANCE SPECIFICATIONS, AC AND DC (Continued)

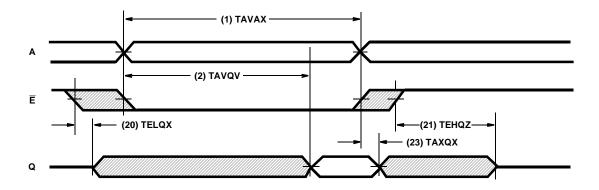
		(NOTE 1)			LIMIT	s	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Write Enable to Output in High Z	(18) TWLQZ	VCC = 4.5V and 5.5V	1	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	-	40	ns
Write Enable High to Output ON	(19) TWHQX	VCC = 4.5V and 5.5V	1	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	0	-	ns
Chip Enable to Output ON	(20) TELQX	VCC = 4.5V and 5.5V	1	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	5	-	ns
Output Enable High to Output in High Z	(21) TEHQZ	VCC = 4.5V and 5.5V	1	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	-	40	ns
Chip Disable to Output Hold Time	(22) TE- HQX	VCC = 4.5V and 5.5V	1	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	5	-	ns
Address Invalid Output Hold Time	(23) TAXQX	VCC = 4.5V and 5.5V	1	$-55^{\circ}C \le T_{A} \le +125^{\circ}C$	5	-	ns
High Level Output Voltage	(24) VOH2	VCC = 4.5V, IO = -100mA	1	-55 ⁰ C ≤ T _A ≤ +125 ⁰ C-	VCC -0.4V	-	V


NOTES:

- 1. The parameters listed in Table 3 are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design release and upon design changes which would affect these characteristics.
- 2. Applies to DIP device types only.
- 3. Applies to LCC device types only.

TABLE 4. APPLICABLE SUBGROUPS

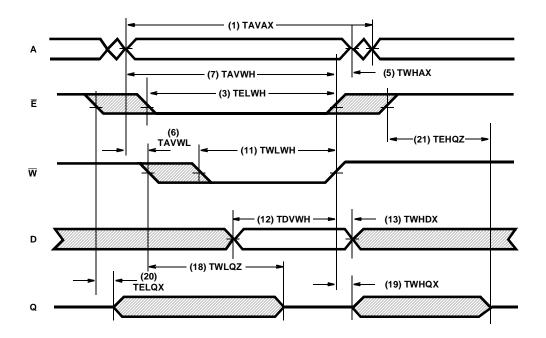
CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	100%/5004	-
Interim Test	100%/5004	1, 7, 9
PDA	100%/5004	1
Final Test	100%/5004	2, 3, 8A, 8B, 10, 11
Group A	Samples/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11
Groups C & D	Samples/5005	1, 7, 9


Timing Waveforms

NOTE:

1. \overline{W} is high for entire cycle and D is ignored. Address is stable by the time \overline{E} goes low and remains valid until \overline{E} goes high.

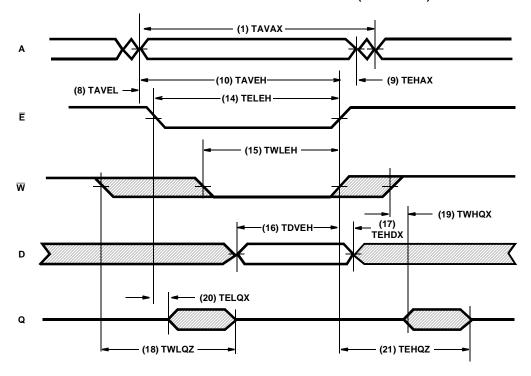
FIGURE 1. READ CYCLE 1: CONTROLLED BY $\overline{\mathbf{E}}$



NOTE:

1. \overline{W} is high for the entire cycle and D is ignored. \overline{E} is stable prior to A becoming valid and after A becomes invalid.

FIGURE 2. READ CYCLE 2: CONTROLLED BY ADDRESS


Timing Waveforms (Continued)

NOTE:

1. In this mode, \overline{E} rises after \overline{W} . The address must remain stable whenever both \overline{E} and \overline{W} are low.

FIGURE 3. WRITE CYCLE 1: CONTROLLED BY \overline{W} (LATE WRITE)

NOTE:

1. In this mode, \overline{W} rises after \overline{E} . If W falls before \overline{E} by a time exceeding TWLQZ (Max) TELQX (Min), and rises after \overline{E} by a time exceeding TEHQZ (Max) TWHQZ (Min), then Q will remain in the high impedance state throughout the cycle.

FIGURE 4. WRITE CYCLE 2: CONTROLLED BY \overline{E} (EARLY WRITE)

Low Voltage Data Retention

Intersil CMOS RAMs are designed with battery backup in mind. Data retention voltage and supply current are guaranteed over temperature. The following rules ensure data retention:

- Chip Enable (E) must be held high during data retention; within VCC to VCC +0.3V.
- On RAMs which have selects or output enables (e.g., S, G), one of the selects or output enables should be held in the deselected state to keep the RAM outputs high impedance, minimizing power dissipation.
- 3. Inputs which are to be held high (e.g., \overline{E}) must be kept between VCC +0.3V and 70% of VCC during the power up and down transitions.
- 4. The RAM can begin operation >55ns after VCC reaches the minimum operating voltage (4.5V).

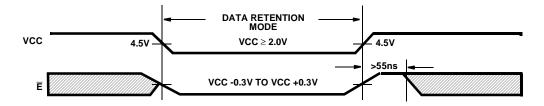
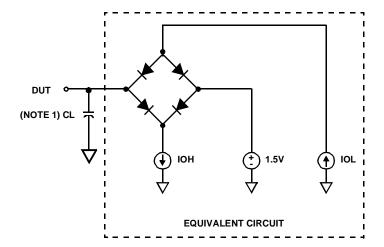
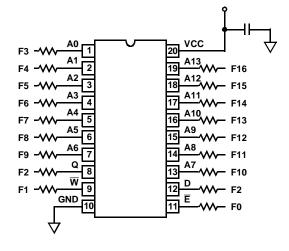
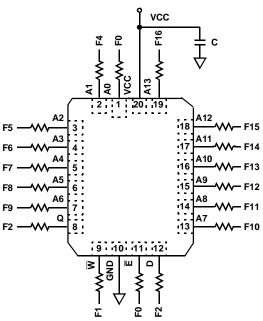



FIGURE 5. DATA RETENTION TIMING

Test Circuit


NOTE:

1. Test head capacitance includes stray and jig capacitance.


Burn-In Circuits

HM-65262/883 CERDIP

TOP VIEW

HM-65262/883 CLCC TOP VIEW

NOTES:

All resistors $47k\Omega \pm 5\%$.

 $F0 = 100kHz \pm 10\%$.

 $F1 = F0 \div 2$, $F2 = F1 \div 2$, $F3 = F2 \div 2 \dots F13 = F12 \div 2$.

VCC = $5.5V \pm 0.5V$.

 $VIH = 4.5V \pm 10\%$.

VIL = -0.2V to +0.4V.

 $C = 0.01 \mu F Min.$

NOTES:

All resistors $47k\Omega \pm 5\%$.

 $F0 = 100kHz \pm 10\%$.

 $F1 = F0 \div 2$, $F2 = F1 \div 2$, $F3 = F2 \div 2 \dots F13 = F12 \div 2$.

 $VCC = 5.5V \pm 0.5V.$

 $VIH = 4.5V \pm 10\%$.

VIL = -0.2V to +0.4V.

 $C = 0.01 \mu F Min.$

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

Die Characteristics

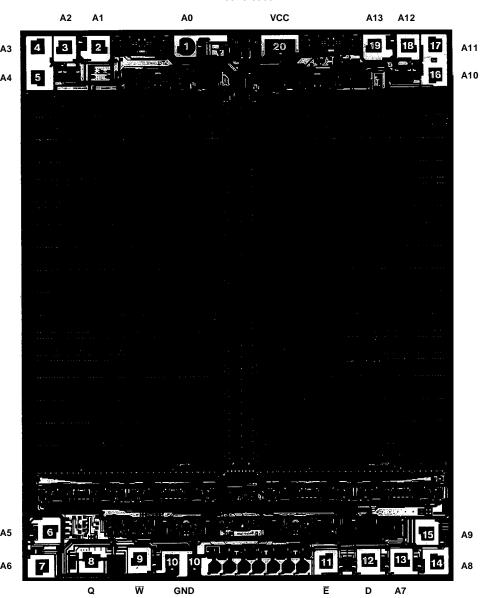
DIE DIMENSIONS:

148 x 187 x 19 mils

METALLIZATION:

Type: Si - Al

Thickness: 11kÅ ±2kÅ


GLASSIVATION:

Type: SiO_2 Thickness: $8k\mathring{A} \pm 1k\mathring{A}$

WORST CASE CURRENT DENSITY: $1.2 \times 10^5 \text{ A/cm}^2$

Metallization Mask Layout

HM-65262/883

