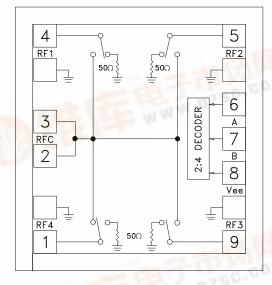
v01.0404

HMC344


GaAs MMIC SP4T NON-REFLECTIVE SWITCH, DC - 8.0 GHz

Typical Applications

The HMC344 is ideal for:

- Telecom Infrastructure
- Microwave Radio & VSAT
- Military & Space
- Test Instrumentation

Functional Diagram

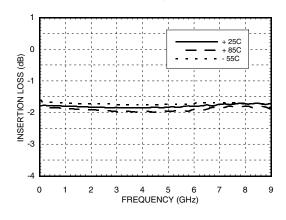
Features

Broadband Performance: DC - 8.0 GHz Low Insertion Loss: 1.8 dB @ 6.0 GHz

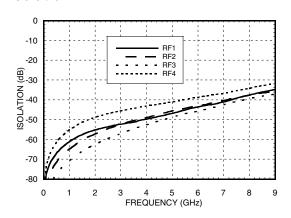
Integrated 2:4 TTL Decoder

Small Size: 1.08 mm x 1.05 mm x 0.10 mm

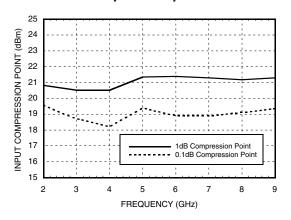
General Description

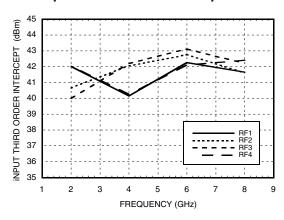

The HMC344 is a broadband non-reflective GaAs MESFET SP4T switch chip. Covering DC to 8.0 GHz, this switch offers high isolation and low insertion loss and extends the frequency coverage of Hittite's SP4T switch product line. This switch also includes an on board binary decoder circuit which reduces the required logic control lines to two. The switch operates using a negative control voltage of 0/-5V, and requires a fixed bias of -5V. All data is tested with the chip in a 50 Ohm test fixture connected via 0.025 mm (1 mil) diameter wire bonds of minimal length 0.31 mm (12 mils).

Electrical Specifications, T_A = +25° C, With 0/-5V Control, Vee= -5V, 50 Ohm System


Parameter	Frequency	Min.	Тур.	Max.	Units
Insertion Loss	DC - 6.0 GHz DC - 8.0 GHz	100	1.8 1.9	2.1 2.2	dB dB
Isolation	DC - 2.0 GHz DC - 4.0 GHz DC - 6.0 GHz DC - 8.0 GHz	44 37 34 30	49 42 39 35	0750	dB dB dB dB
Return Loss "On State"	DC - 2.0 GHz DC - 8.0 GHz	10 7	14 10		dB dB
Return Loss "Off State"	DC - 8.0 GHz	7	10		dB
Input Power for 1 dB Compression	0.5 - 8.0 GHz	17	21		dBm
Input Third Order Intercept (Two-Tone Input Power= +7 dBm Each Tone)	0.5 - 8.0 GHz	37	40		dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)	DC - 8.0 GHz		35 150		ns ns


Insertion Loss vs. Temperature


Isolation


Return Loss

0.1 and 1 dB Input Compression Point

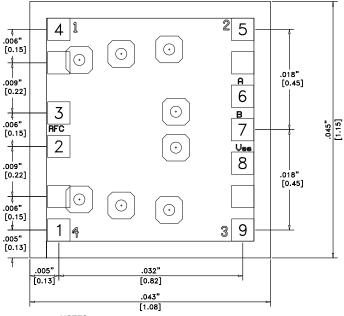
Input Third Order Intercept Point

Absolute Maximum Ratings

Bias Voltage Range (Vee)	-7.0 Vdc	
Control Voltage Range (A & B)	Vee -0.5V to +1.0 Vdc	
Channel Temperature	150 °C	
Thermal Resistance (Insertion Loss Path)	143 °C/W	
Thermal Resistance (Terminated Path)	1,030 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
Maximum Input Power	+24 dBm	

Bias Voltage & Current

Vee Range= -5.0 Vdc ±10%			
Vee (Vdc)	ldd (Typ) (mA)	Idd (Max) (mA)	
-5.0	3.0	6.0	


Truth Table

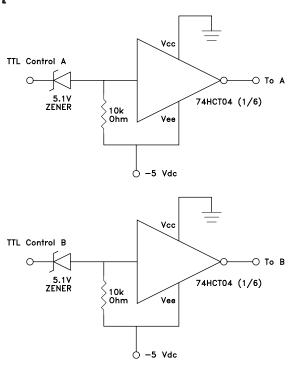
Control Input		Signal Path State	
Α	В	RF COM to:	
High	High	RF1	
Low	High	RF2	
High	Low	RF3	
Low	Low	RF4	

TTL/CMOS Control Voltages

State	Bias Condition
Low	-3V to 0 Vdc @ 60 uA Typ.
High	-5 to 4.2 Vdc @ 5 uA Typ.

Outline Drawing

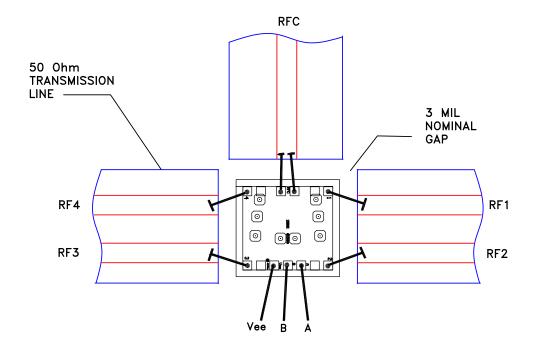
NOTES:


- DIMENSIONS IN INCHES [MILLIMETERS].
- 2. DIE THICKNESS IS 0.004".
- 3. TYPICAL BOND PAD IS 0.004" SQUARE.
- 4. TYPICAL BOND PAD SPACING IS 0.006" CENTER TO CENTER.
- 5. BOND PAD METALLIZATION: GOLD.
- 6. BACKSIDE METALLIZATION: GOLD.
- 7. BACKSIDE METAL IS GROUND.
- 8. NO CONNECTION REQUIRED FOR UNLABELED BOND PADS.

Pad Descriptions

Pad Number	Function	Description	Interface Schematic
1, 2, 3, 4, 5, 9	RF4, RFC, RF1, RF2, RF3	These pads are DC coupled and matched to 50 Ohms. Blocking capacitors are required.	
6	А	See truth table and control voltage table.	100K
7	В	See truth table and control voltage table.	Vee
8	Vee	Supply Voltage -5.0 Vdc ±10%	
Die Bottom	GND	Die bottom must be connected to RF/DC ground.	=

TTL Interface Circuit



Note:

Control inputs A and B can be driven directly with TTL logic with -5 Volts applied to the HCT logic gates Vee pin and to Vee (pad) of the RF Switch.

Assembly Diagram

Handling Precautions

Follow these precautions to avoid permanent damage.

Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

Static Sensitivity: Follow ESD precautions to protect against $> \pm 250$ V ESD strikes.

Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up.

General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers.

Mounting

The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat.

Eutectic Die Attach: A 80/20 gold tin preform is recommended with a work surface temperature of 255 deg. C and a tool temperature of 265 deg. C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 deg. C. DO NOT expose the chip to a temperature greater than 320 deg. C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment.

Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer's schedule.

Wire Bonding

Ball or wedge bond with 0.025mm (1 mil) diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of 150 deg. C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31mm (12 mils).

v01.0404

MICROWAVE CORPORATION

GaAs MMIC SP4T NON-REFLECTIVE SWITCH, DC - 8.0 GHz

Notes: