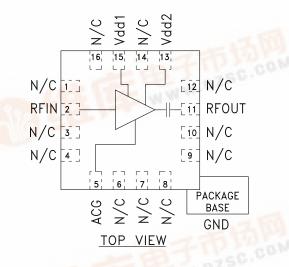


捷多邦,专业PCB打样工厂,24小时加急出货

HMC375LP3


GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Typical Applications

The HMC375LP3 is ideal for basestation receivers:

- GSM, GPRS & EDGE
- CDMA & W-CDMA
- DECT

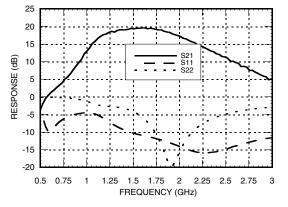
Functional Diagram

Features

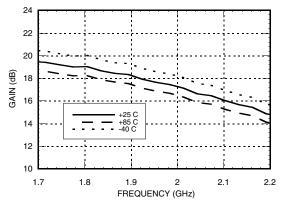
Noise Figure: 0.9 dB +34 dBm Output IP3 Gain: 17 dB Very Stable Gain vs. Supply & Temperature Single Supply: +5.0 V @ 136 mA 50 Ohm Matched Output

General Description

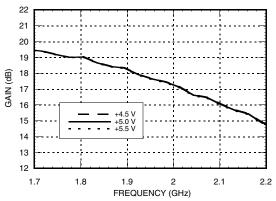
The HMC375LP3 high dynamic range GaAs PHEMT MMIC Low Noise Amplifier is ideal for GSM & CDMA cellular basestation front-end receivers operating between 1.7 and 2.2 GHz. This LNA has been optimized to provide 0.9 dB noise figure, 17 dB gain and +33 dBm output IP3 from a single supply of +5.0V @ 136mA. Input and output return losses are 14 dB typical with the LNA requiring minimal external components to optimize the RF input match, RF ground and DC bias. The HMC375LP3 shares the same package with the HMC356LP3 and HMC372LP3 high IP3 LNAs. A low cost, leadless 3x3 mm (LP3) SMT QFN package houses the low noise amplifier.

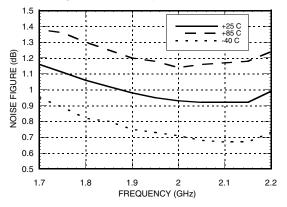

Electrical Specifications, $T_A = +25^{\circ}$ C, Vs = +5V

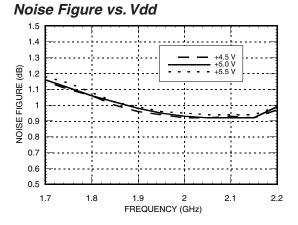
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	1.8 - 1.9		1.9 - 2.0			2.0 - 2.1		2.1 - 2.2		GHz			
Gain	16.5	18.5		15.5	17.5		15	17	-	13	15	40.	dB
Gain Variation Over Temperature		0.014	0.021		0.014	0.021	10	0.014	0.021	WW	0.014	0.021	dB/°C
Noise Figure		1.0	1.35		0.9 <mark>5</mark>	1.2		0.9	1.2		0.9	1.3	dB
Input Return Loss		12	17	630	13	110		14			15		dB
Output Return Loss		13	3.74	-ast	16			11			8		dB
Reverse Isolation	2.	35	50-		34			34			34		dB
Output Power for 1dB Compression (P1dB)	16	18.5		16	18.5		15	18		14.5	17.5		dBm
Saturated Output Power (Psat)		19.5			19.5			19.5			19.5		dBm
Output Third Order Intercept (IP3) (-20 dBm Input Power per tone, 1 MHz tone spacing)		34			33.5			33			32.5		dBm
Supply Current (Idd)		136			136			136			136		mA

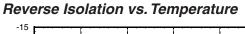


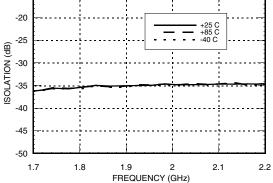
GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz


Broadband Gain & Return Loss

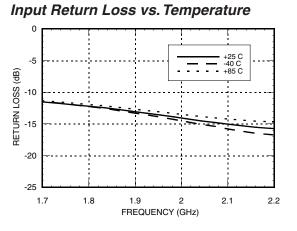

Gain vs. Temperature

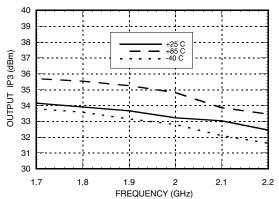


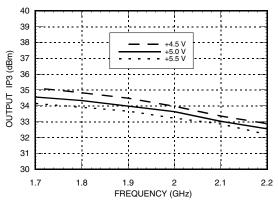

Gain vs. Vdd

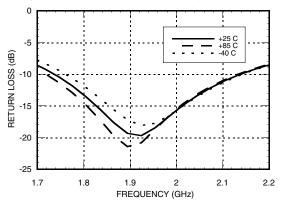


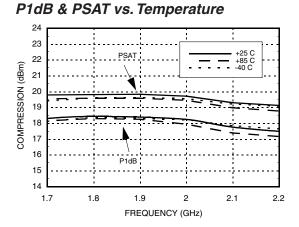
Noise Figure vs. Temperature

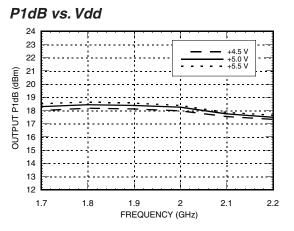





GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz


Output IP3 vs. Temperature

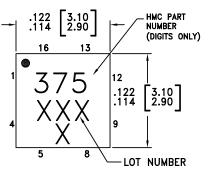


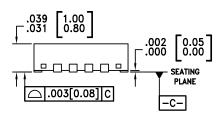

Output IP3 vs. Vdd

Output Return Loss vs. Temperature

For price delivery and to place orders please contact Hittite Microwave Corporation:

GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 MHz


Absolute Maximum Ratings


Drain Bias Voltage (Vdd1, Vdd2)	+8.0 Vdc
RF Input Power (RFin)(Vs = +5.0 Vdc)	+15 dBm
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 15.6 mW/°C above 85 °C)	1.015 W
Thermal Resistance (channel to ground paddle)	64.1 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vdd

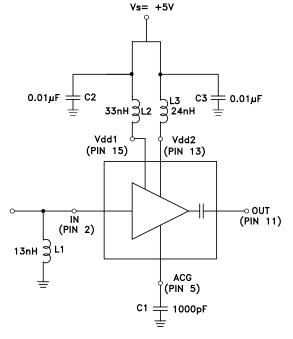
Vdd (Vdc)	ldd (mA)
+4.5	135
+5.0	136
+5.5	137

Outline Drawing

BOTTOM VIEW -.016 [0.40] REF **PIN 16** .008 [0.20] MIN .012 0.30 .007 0.18 PIN 1 .022 0.56 .017 0.44 1.56 1.44 Г .061 .057 Π EXPOSED GROUND PADDLE MUST BE CONNECTED TO .077 1.95 .059 1.50 RF/DC GROUND SQUARE

NOTES:

- 1. PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY
- 3. LEAD AND GROUND PADDLE PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 6. CHARACTERS TO BE HELVETICA MEDIUM, 0.35 HIGH, WHITE INK, OR LASER MARK LOCATED APPROX. AS SHOWN.
- 7. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 8. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 9. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 9. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

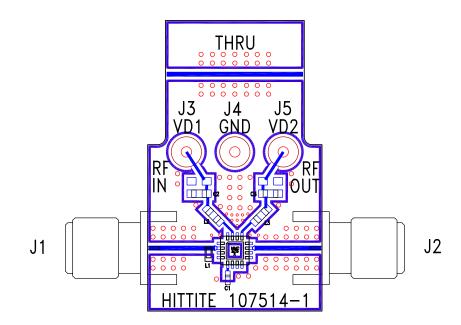


GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 4, 6-10,12,14,16	N/C	No connection necessary. These pins may be connected to RF/DC ground.	
2	RF IN	This pin is matched to 50 Ohms with a 13 nH inductor to ground. See Application Circuit.	RFIN O
5	ACG	AC Ground - An external capacitor of 0.01µF to ground is required for low frequency bypassing. See Application Circuit for further details.	Vdd ACG
11	RF OUT	This pin is AC coupled and matched to 50 Ohms.	
13,15	Vdd2, Vdd1	Power supply voltage. Choke inductor and bypass capacitor are required. See application circuit.	
	GND	Package bottom must be connected to RF/DC ground.	

Application Circuit


Note: L1, L2, L3 and C1 should be located as close to pins as possible.

For price delivery and to place orders please contact Hittite Microwave Corporation:

GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 1.7 - 2.2 GHz

Evaluation PCB

List of Material

Item	Description	
J1 - J2	PC Mount SMA RF Connector	
J3 - J4	DC Pin	
C1	1000 pF Capacitor, 0402 Pkg.	
C2, C3	10000 pF Capacitor, 0603 Pkg.	
L1	13nH Inductor, 0402 Pkg.	
L2	33nH Inductor, 0603 Pkg.	
L3	24nH Inductor, 0402 Pkg.	
U1	HMC375LP3 Amplifier	
PCB*	107514 Eval Board	
* Circuit Board Material: Rogers 4350		

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of VIA holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. 8

For price delivery and to place orders, please contact Hittite Microwave Corporation: