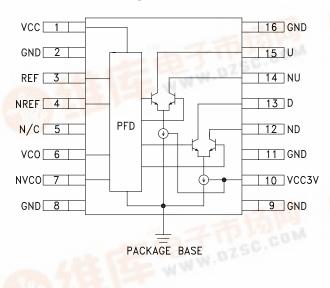


捷多邦, 专业PCB打样工厂, 24小时加急出货 HMC439QS16G HBT DIGITAL PHASE-FREQUENCY


HBT DIGITAL PHASE-FREQUENCY DETECTOR, 10 - 1300 MHz

Typical Applications

This Phase Frequency Detector is a key component in low phase noise frequency synthesis applications such as:

- Pt Pt Radios
- Satellite Communication Systems
- Military Applications
- Sonet Clock Generation

Functional Diagram

Features

Ultra Low SSB Phase Noise Floor: -153 dBc/Hz@10 kHz offset @ 100 MHz Input up to 1300 MHz Fin.

Differential Input/Single Ended Output Open Collector Output Buffer Amplifiers QSOP16G SMT Package: 29.4 mm²

General Description

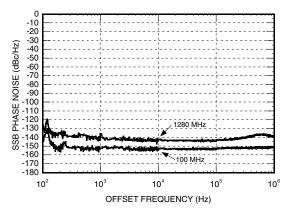
The HMC439QS16G is a digital phase-frequency detector intended for use in low noise phaselocked loop applications for inputs from 10 to 1300 MHz. Its combination of high frequency of operation along with its ultra low phase noise floor make possible synthesizers with wide loop bandwidth and low N resulting in fast switching and very low phase noise. When used in conjunction with a differential loop amplifier, the HMC439QS16G generates an output voltage that can be used to phase lock a VCO to a reference oscillator. The device is packaged in a low cost, surface mount 16 lead QSOP package with an exposed base for improved RF and thermal performance.

	$r_{A} = r_{20} = 0, r_{00} = 0.0$		687		C.Com
Parameter	Conditions	Min.	Тур.	Max.	Units
Maximum Input Frequency	380 7.4	1300			MHz
Minimum Input Frequency	Sine Wave Input			10	MHz
Input Power Range	Fin= 10 to 1300 MHz	-10		+10	dBm
Output Voltage	W.BZSS		2000		mV, Pk - Pk
SSB Phase Noise	@ 10 kHz Offset with 100 MHz Input & Pin= 0 dBm		-153		dBc/Hz
Supply Current (Icc)			96		mA

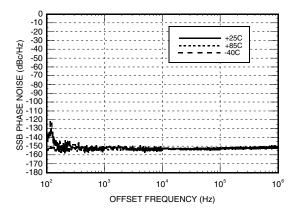
Electrical Specifications, *T_A* = +25° *C*, *Vcc*= 5*V*

For price delivery and to place orders, please contact Hittite Microwave Corporation

ERROR VOLTAGE (Vdc)


HMC439QS16G

HBT DIGITAL PHASE-FREQUENCY DETECTOR, 10 - 1300 MHz


Error Voltage vs. Supply Voltage, Pin= 0 dBm, Fin= 250 MHz* 1.2 1.2 1 0.8 0.8 ERROR VOLTAGE (Vdc) 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 250MHz Vcc=4.75V -0.6 -0.6 800MHz Vcc=5.0V -0.8 -0.8 1.3GHz Vcc=5.25V -1 -1 -1.2 -1.2 $\pi/2$ 0 0 $\pi/2$ $-\pi/2$ $-\pi/2$ $-\pi$ -π PHASE DIFFERENCE (rad) PHASE DIFFERENCE (rad) Error Voltage vs. Temperature, Pin= 0 dBm, Fin= 250 MHz* 1.2 0.8 ERROR VOLTAGE (Vdc) 0.6 0.4 0.2 0 -0.2 -0.4 +25 C -0.6 +85 C -0.8 -40 C -1 -1.2 0 $\pi/2$ $-\pi/2$ -π

PHASE DIFFERENCE (rad)

SSB Phase Noise Performance, Pin= 0 dBm, T= 25 °C

SSB Phase Noise Performance, Pin= 0 dBm, Fin= 100 MHz

* See Gain & Error Voltage Test Circuit herein.

lace orders, please contact Hittite Microwaye Corporation

Error Voltage vs. Frequency, Pin= 0 dBm*

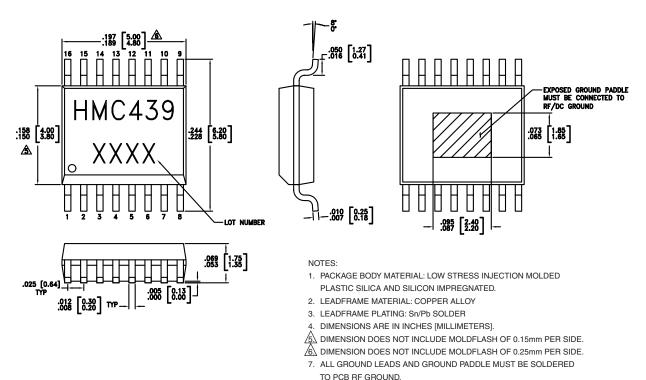
HMC439QS16G

HBT DIGITAL PHASE-FREQUENCY DETECTOR, 10 - 1300 MHz

Absolute Maximum Ratings

RF Input (Vcc= +5V)	+13 dBm
Supply Voltage (Vcc)	+5.5V
Channel Temperature (Tc)	135 °C
Continuous Pdiss (T = 85 °C) (derate 47.2 mW/° C above 85 °C)	4.25 W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vcc


Vcc (Vdc)	Icc (mA)
4.8	90
5.0	96
5.2	102

Note: Detector will work over full voltage range above.

Typical DC Characteristics @ Vcc = +5V

Symbol	Characteristics	+25C			Units
Gymbol		Min.	Тур.	Max.	Units
lcc	Power Supply Current	90	96	102	mA
Voh	Output High Voltage	5.0	5.0	5.0	V
Vol	Output Low Voltage	2.9	3	3.1	V

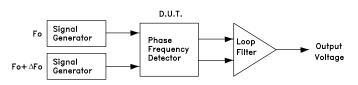
Outline Drawing

HMC439QS16G

HBT DIGITAL PHASE-FREQUENCY DETECTOR, 10 - 1300 MHz

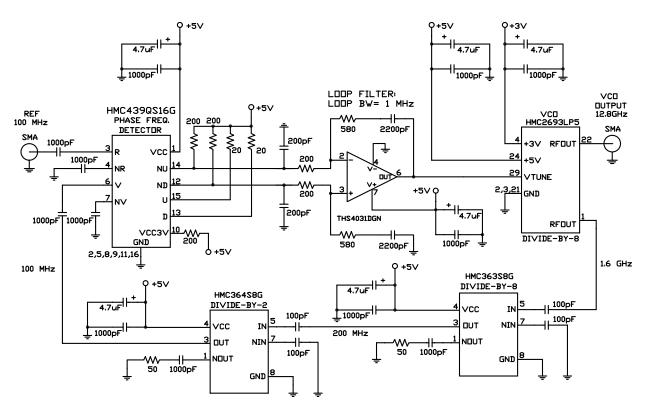
Pin Description

Pin Number	Function	Description	Interface Schematic
1	Vcc	Supply voltage 5V ± 0.2V	
2, 8, 9, 11, 16	GND	All ground leads and ground paddle must be connected to PCB RF/DC ground.	
		(These pins are AC coupled and must be DC blocked externally.)	
3	REF	Reference Input	
4	NREF	Reference Input Compliment	
5	N/C	Not Connected	
		(These pins are AC coupled and must be DC blocked externally.)	
6	VCO	VCO Input	
7	NVCO	VCO Input Compliment	
10	Vcc3V	3.0 Volt Reference Voltage for Internal 10mA Current Source	Vcc3V 2000 = 10 mA
12	ND	Down Output Compliment	ND D
13	D	Down Output	() 10 mA
14	NU	Up Output Compliment	NU U
15	U	Up Output	() 10 mA


For price delivery and to place orders, please contact Hittite Microwave Corporation:

HMC439QS16G HBT DIGITAL PHASE-FREQUENCY DETECTOR, 10 - 1300 MHz

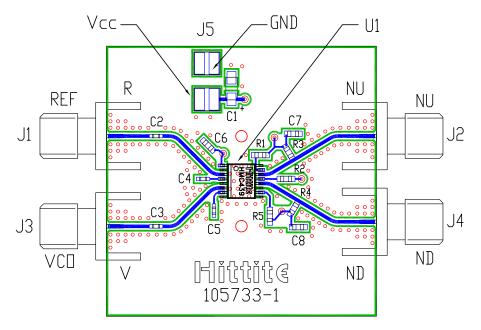
Gain & Error Voltage Test Circuit:


Gain & Error Voltage data taken using test circuit below. Loop filter gain has been subtracted from the result.

 ${\vartriangle} F{=}$ The beat frequency of the sawtooth waveform.

Typical PLL Application Circuit using HMC439QS16G

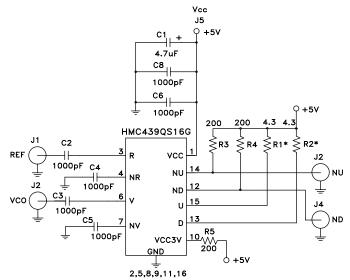
PLL application shown for a 12.8 GHz Fout. Contact HMC to discuss your specific application.


For price delivery and to place orders, please contact Hittite Microwave Corporation:

HMC439QS16G

HBT DIGITAL PHASE-FREQUENCY DETECTOR, 10 - 1300 MHz

Evaluation PCB



The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and backside ground slug should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

List of Material

PC Mount SMA RF Connector 2 mm DC Header		
2 mm DC Header		
4.7 μF Capacitor		
100 pF Capacitor, 0402 Pkg.		
1000 pF Capacitor, 0603 Pkg.		
4.3 Ohm Resistor, 0603 Pkg.		
200 Ohm Resistor, 0603 Pkg.		
HMC439QS16G		
105733 Eval Board		
** Circuit Board Material: Rogers 4350		

Evaluation PCB Circuit

* Choose values of R1 & R2 between 4.3 and 20 Ohms for best noise performance.