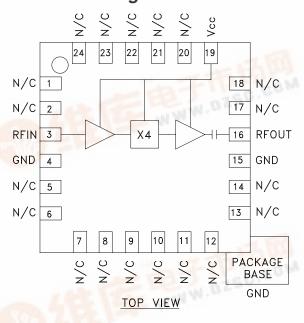
v01 0604

HMC443LP4


SMT GaAs HBT MMIC x4 ACTIVE FREQUENCY MULTIPLIER, 9.8 - 11.2 GHz OUTPUT

Typical Applications

Active Multiplier for X Band Applications:

- Fiber Optic
- Pt to Pt Radios
- Military Radar

Functional Diagram

Features

Output Power: +4 dBm

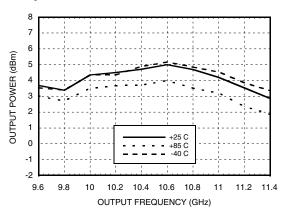
Sub-Harmonic Suppression: >25 dBc

SSB Phase Noise: -142 dBc/Hz Single Supply: 5V@ 52 mA

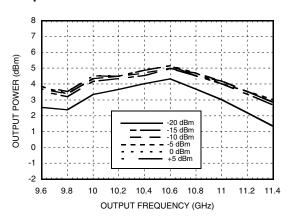
16 mm² Leadless SMT Package

General Description

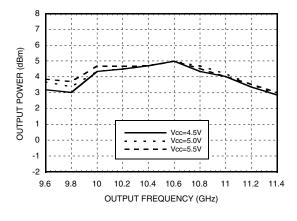
The HMC443LP4 is an active miniature x4 frequency multiplier utilizing InGaP GaAs HBT technology in a 4 mm x 4 mm leadless surface mount package. Power output is +4 dBm typical from a 5.0V supply voltage and varies little vs. input power, temperature and supply voltage. Suppression of undesired fundamental and sub-harmonics is >25 dBc typical with respect to output signal level. The low additive SSB phase noise of -142 dBc/Hz at 100 kHz offset helps the user maintain good system noise performance. The HMC443LP4 is ideal for use in LO multiplier chains allowing reduced parts count vs. traditional approaches.

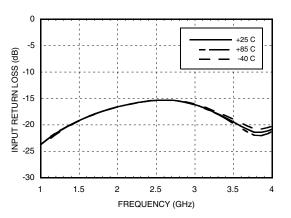

Electrical Specifications, T_A = +25° C, Vcc= 5.0V

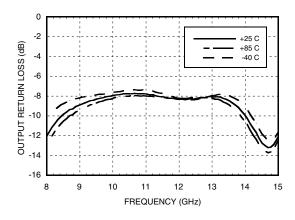
Parameter	Min.	Тур.	Max.	Units
Frequency Range, Input 2.45 - 2.80		32-	GHz	
Frequency Range, Output	9.8 - 11.2		GHz	
Input Power Range	-15		+5	dBm
Output Power	1	4		dBm
Sub-Harmonic Suppression		25		dBc
Input Return Loss		15		dB
Output Return Loss		8		dB
SSB Phase Noise (100 kHz Offset) Pin= 0 dBm		-142		dBc/Hz
Supply Current (Icc)		52		mA


Fittite

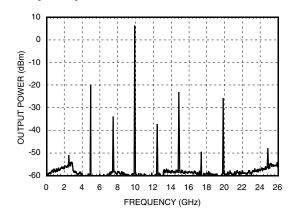
SMT GaAs HBT MMIC x4 ACTIVE FREQUENCY MULTIPLIER, 9.8 - 11.2 GHz OUTPUT

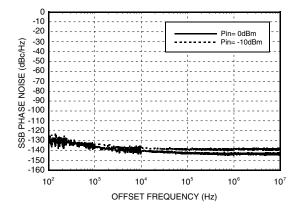

Output Power vs. Temperature @ -10 dBm Drive Level


Output Power vs. Drive Level


Output Power vs. Supply Voltage @ -10 dBm Drive Level

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature



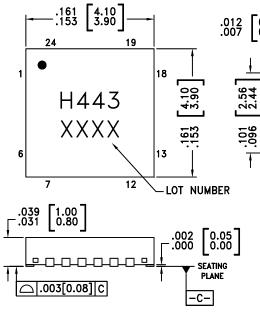
SMT GaAs HBT MMIC x4 ACTIVE FREQUENCY MULTIPLIER, 9.8 - 11.2 GHz OUTPUT

Output Spectrum

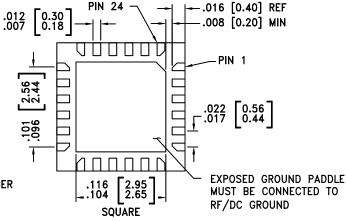
SSB Phase Noise Performance, Fout= 10.5 GHz

SMT GaAs HBT MMIC x4 ACTIVE FREQUENCY MULTIPLIER, 9.8 - 11.2 GHz OUTPUT

Absolute Maximum Ratings


RF Input (Vcc= +5V)	+20 dBm	
Vcc	+6.0V	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	

Typical Supply Current vs. Vcc


Vcc (V)	Icc (mA)	
4.5	51	
5.0	52	
5.5	54	

Note: Multiplier will operate over full voltage range shown above.

Pin Locations & Outline Drawing

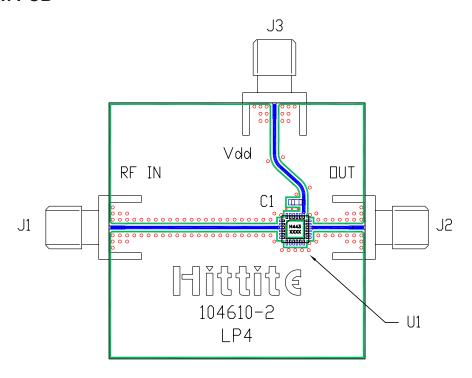
BOTTOM VIEW

NOTES

- MATERIAL PACKAGE BODY: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY
- 3. LEAD AND GROUND PADDLE PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 7. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 8. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 9. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

SMT GaAs HBT MMIC x4 ACTIVE FREQUENCY MULTIPLIER, 9.8 - 11.2 GHz OUTPUT

Pin Description


Pin Number	Function	Description	Interface Schematic
1, 2, 5-14, 17, 18, 20-24	N/C	No Connection	
3	RF IN	RF input needs to be DC blocked only if there is an external DC voltage applied to RF IN.	50Ω
4, 15	GND	All ground leads and ground paddle must be soldered to PCB RF/DC ground.	
16	RF OUT	Multiplied Output. AC coupled. No external DC blocks necessary.	
19	Vcc	Supply voltage 5V ± 0.5V.	

11

SMT GaAs HBT MMIC x4 ACTIVE FREQUENCY MULTIPLIER, 9.8 - 11.2 GHz OUTPUT

Evaluation PCB

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. The evaluation circuit board shown is available from Hittite upon request.

List of Materials

Item	Description	
J1 - J3	PC Mount SMA Connector	
C1	1,000 pF Capacitor, 0603 Pkg.	
U1	HMC443LP4, x4 Active Multiplier	
PCB*	104610 Eval Board	
* Circuit Board Material: Rogers 4350		