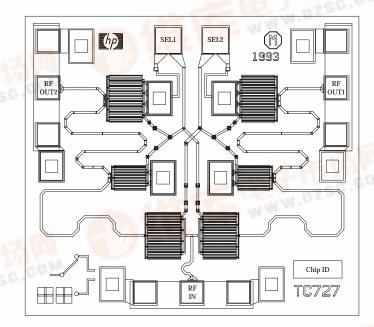


DC – 6 GHz Unterminated SPDT Switch

Technical Data

HMMC-2006


Features

- Frequency Range: DC-6 GHz
- Insertion Loss: <1dB@6GHz
- Isolation:
 - >70 dB @ 45 MHz >35 dB @ 6 GHz
- Return Loss: >12 dB (Both Input & Output)
- **Switching Speed:** <1 ns
- P_{-1dB}: 23 dBm @ 50 MHz >27dBm @ 6 GHz
- Harmonics: <-25 dBc @ 20 dBm (DC coupled)

Description

f.dzsc.com

The HMMC-2006 is a GaAs monolithic microwave integrated circuit (MMIC) designed for low insertion loss and high isolation from DC to 6 GHz. It is intended for use as a general-purpose, singlepole, double-throw (SPDT) switch. One series and two shunt MESFETs per throw provide 1.2 dB maximum insertion loss and 35 dB minimum isolation at 6 GHz. HMMC-2006 chips use through-substrate vias to provide ground connections to the chip backside and minimize the number of wire bonds required. The HMMC-2006 is also available man 8-lead flatpack (1GG7-4201).

Chip Size: $960 \times 1070 \,\mu\text{m} (37.8 \times 42.1 \,\text{mils})$ Chip Size Tolerance: $+0,-10 \,\mu\text{m} (+0,-0.4 \,\text{mils})$

Chip Thickness: $127 \pm 15 \mu m (5.0 \pm 0.6 mils)$

Pad Dimensions: $80 \times 80 \mu m (3.2 \times 3.2 \text{ mils})$, or larger

Absolute Maximum Ratings[1]

Symbol	Parameters/Conditions	Units	Min.	Max.
$V_{ m sel}$	Select Voltages 1 and 2	V	-12	+3
P_{in}	RF Input Power	dBm		30
T_{op}	Operating Temperature	°C	-55	+125
T_{STG}	Storage Temperature	°C	-65	+165
T_{max}	Maximum Assembly Temp. (for 60 seconds max.)	°C		+300

Note:

1. Operation in excess of any one of these conditions may result in permanent damage to this device. $T_A = 25^{\circ}\text{C}$ except for T_{ch} , T_{STG} , and T_{max} .

Symbol	Parameters and Test Conditions	Units	Min.	Typ.	Max.
I_l	Leakage Current @ -10 V	μΑ			100
$V_{\rm p}$	Pinch-off Voltage @ 8 mA	V	-6.75		-3.25
$\mathrm{BV}_{\mathrm{gss}}$	Breakdown Voltage Total	V	-18.0		-12.5

$\textbf{RF Specifications,} \ T_{A} = 25 ^{\circ}C, \ Z_{O} = 50 \ \Omega, \ V_{sel} \ high = 0 \ V, \ V_{sel} \ low = -10 \ V$

Symbol	Parameters and Test Conditions	Units	Min.	Тур.	Max.
BW	Guaranteed Operating Bandwidth	GHz	DC		6
IL	$\label{eq:insertion Loss} \text{Insertion Loss, RF}_{\text{in}} \text{ to RF}_{\text{out}}, \qquad \qquad \text{f = 6 GHz, ON throw}$	dB		1	1.2
ISO	Isolation, RF_{in} to RF_{out} , $f = 6 GHz$, OFF throw	dB	35	40	
RL in	Input Return Loss	dB	12	14	
RL_{out}	Output Return Loss	dB	12	15	
$P_{1 dB}$	Input Power where IL increases by 1 dB $f = 50 \text{MHz}$	dBm	18	23	
$t_{\rm s}$	Switching Speed, $10\%-90\%$ RF Envelope, $f = 2$ GHz	ns		1	

Applications

The HMMC-2006 can be used in instrumentation, communications, radar, ECM, EW, and many other systems requiring SPDT switching. It can be used for pulse modulation, port isolation, transfer switching, high-speed switching, replacement of mechanical switches, and so on. It can also be used as a terminated SPST (single-pole-single-throw) switch by placing a 50 Ω load on either RF output port.

Assembly Techniques

Die attach may be done with either a AuSn solder preform or conductive epoxy. Gold thermosonic bonding is recommended for all bonds. The top and bottom metallization is gold. For more detailed information see HP application note #999 "GaAs MMIC Assembly and Handling Guidelines."

GaAs MMICs are ESD sensitive. Proper precautions should be used when handling these devices.

S-Parameters^[1], $T_A = 25$ °C, $Z_O = 50 \Omega$, $V_{sel} high = 0 V$, $V_{sel} low = -10 V$

Frequency	S	11	S ₂₁ (Insertion Loss)		S ₃₁ (Isolation)	
\mathbf{GHz}	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
0.1	0.93	-8	4.26	172	0.01	86
0.5	0.0365	-27.03	0.9366	-11.32	0.0010	78.03
1.0	0.0372	-41.81	0.9336	-17.35	0.0017	76.84
1.5	0.0448	-63.14	0.9311	-23.47	0.0026	76.05
2.0	0.0542	-80.60	0.9286	-27.67	0.0033	75.66
2.5	0.0631	-88.46	0.9271	-29.73	0.0039	77.4
3.0	0.0715	-93.98	0.9242	-33.03	0.0049	81.14
3.5	0.0795	-101.90	0.9199	-38.93	0.0059	82.09
4.0	0.0872	-108.90	0.9164	-45.14	0.0063	78.90
4.5	0.0951	-114.40	0.9123	-50.49	0.0068	78.94
5.0	0.1022	-120.90	0.9054	-56.36	0.0078	84.68
5.5	0.1074	-123.50	0.9032	-62.07	0.0084	84.71
6.0	0.1138	-132.70	0.9058	-69.04	0.0115	91.24

Note:

1. 3-port-wafer-probed data.

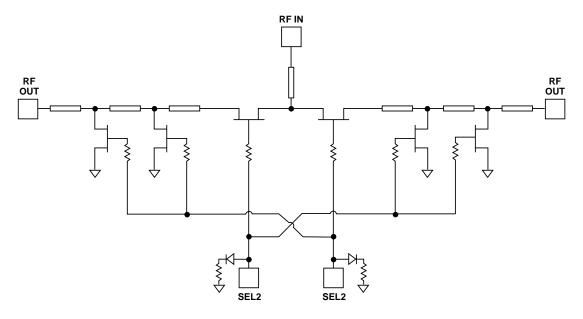


Figure 1. HMMC-2006 Schematic.

Recommended Operating Conditions, $T_A = 25$ °C

Select Line		RF 1	Path		
SEL1	SEL2	RF IN to RF OUT1	RF IN to RF OUT2		
-10V	0 V	Isolated	Low Loss		
0 V	-10V	Low Loss	Isolated		

HMMC-2006 Typical Performance

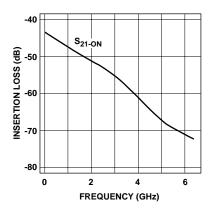


Figure 2. Insertion $Loss^{[1]}$ vs. Frequency.

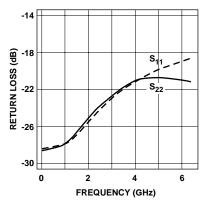


Figure 3. Input and Output (On Throw) Return Loss^[1] vs. Frequency.

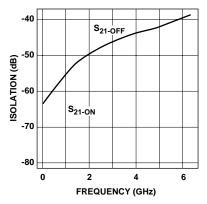


Figure 4. Input-to-Output Isolation^[1] vs. Frequency.

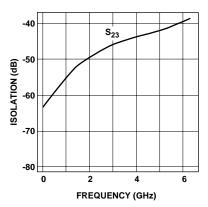


Figure 5. Output-to-Output Isolation $\[^{2}\]$ vs. Frequency.

Notes:

- 1. Wafer-probed measurements
- 2. Calculated from wafer-probed measurements

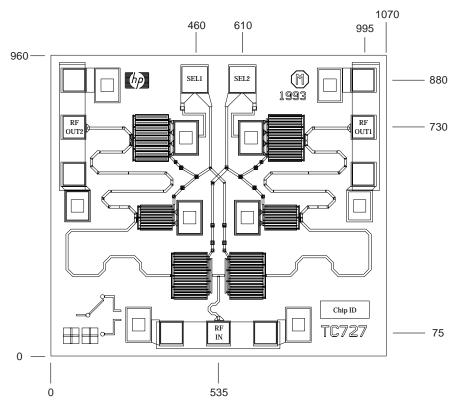


Figure 6. HMMC-2006 Bonding Pad Locations. (Dimensions in micrometers)