4－BIT SINGLE CHIP MICROCOMPUTERS
 HMS38112／39112 USER＇S MANUAL

－HMS38112
－HMS39112

VER. 1.00
Published by
MCU Application Team in MagnaChip Semiconductor Ltd. Co., Ltd.
(c) MagnaChip Semiconductor Ltd. 2004 All Right Reserved.

Additional information of this manual may be served by MagnaChip Semiconductor Ltd. Offices in Korea or Distributors and Representative listed at address directory.

MagnaChip Semiconductor Ltd. reserves the right to make changes to any Information here in at any time without notice.

The information, diagrams, and other data in this manual are correct and reliable; however, MagnaChip Semiconductor Ltd. is in no way responsible for any violations of patents or other rights of the third party generated by the use of this manual.

HMS38112	1
HMS39112	2

\section*{| ARCHITECTURE | 3 |
| :--- | :--- |}

CHAPTER 1. HMS38112

Outline of characteristics

The HMS38112 is remote control transmitter which uses CMOS technology
This enables transmission code outputs of different configurations, multiple custom code output, and double push key output for easy fabrication.
The HMS38112 is suitable for remote control of TV, VCR, FANS, Air-conditioners, Audio Equipments, Toys, Games etc.

Characteristics

- Program memory : 1,024 bytes
- Data memory : 32×4 bits
- 43 types of instruction set
- 3 levels of subroutine nesting
- Operating frequency : $2.4 \mathrm{MHz} \sim 4 \mathrm{MHz}$
- Instruction cycle : $\mathrm{f}_{\mathrm{osc}} / 48$
- CMOS process (Single 3.0V power supply)
- Stop mode (Through internal instruction)
- Released stop mode by key input(mask option)
- Built in Power-on Reset circuit
- Built in Transistor for I.R LED Drive : $\mathrm{I}_{\mathrm{OL}}=250 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{O}}=0.3 \mathrm{~V}$
- Built in Low Voltage reset circuit
- Built in a watch dog timer (WDT)
- Low operating voltage : 2.0~3.6V
- 20 pin PDIP/SOP/SSOP package

Block Diagram

Fig 1-1 Block Diagram

Pin Assignment

Fig 1-2 HMS38112 Pin Assignment (20 PIN)

Pin Dimension

Fig 1-3. 20PDIP (300MIL) Pin Dimension (UNIT: INCH)

$\frac{\text { DETAIL "A" }}{\text { (soge } 1 / 20)^{\prime}}$

- Note -

1. DIMENSION * MARK DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM ALLOWABLE PROTRUSION IS 0.15 mm PER SIDE.
2. DIMENSION ** MARK DOES NOT INCLUDE MOLD PROTRUSION. MAXIMUM ALLOWABLE PROTRUSION IS 0.25 mm PRE SIDE.
3. DIMENSIONING AND TOLERANCEING PER ANSI Y14.5M-1982.
4. UNSPECIFIED IS ACCORDING TO JEDEC MS-013, VARIATION "AC".

Fig 1-4. 20SOP (300MIL) Pin Dimension (UNIT : mm)

Fig 1-5. 20SSOP (150MIL) Pin Dimension (UNIT : inch)

Pin Description and Circuit

Pin Description

Pin	I/O	Function
VDD	-	Connected to 2.0~3.6V power supply
GND	-	Connected to OV power supply.
K0 ~ K3	Input	4-bit input port with built in pull-up resistor. STOP mode is released by "L" input of each pin.
D0 ~ D5	Output	Each can be set and reset independently. The output is the structure of N -channel-open-drain.
R 0 ~ R1	Input	2-bit input port with built in pull-up resistor. STOP mode is released by "L" input of each pin.
R2 ~ R3	I/O	2-bit I/O port. (Input mode is set only when each of them output "H".) In outputting, each can be set and reset independently(or at once.) The output is in the form of C-MOS. STOP mode is released by "L" input of each pin.
OSC1	Input	Oscillator input. Input to the oscillator circuit and connection point for ceramic resonator. A feedback resistor is connected between this pin and OSC2.
OSC2	Output	Connect a resonator between this pin and OSC1.
PGND	-	Ground pin for internal high current N -channel transistor. (connected to GND)
REMOUT	Output	High current output port for driving I.R.LED. The output is in the form N-channel open drain.

Pin Circuit

Pin	1/0	I/O circuit	Note
R0 ~ R1	1		- Built in MOS Tr for pull-up, about 140k8.
R2 ~ R3	I/O		CMOS output. "H" output at reset. Built in MOS Tr for pull-up, about 140ks.
K0 ~ K3	1		Built in MOS Tr for pull-up, about 140k8.
D0 ~ D5	0		- Open drain output. - "L" output at reset. - D0~D3 are "L" output at STOP MODE. - D4 ~D5 pins "Low" or keep before stop mode at STOP MODE (option)
REMOUT	0		- Open drain output - Output Tr. Disable at reset.

Optional Features

The HMS38112 offers the following optional features.
These options are masked.

- I/O terminals having pull-up resistor : R2 ~ R3
- Input terminals having STOP release mode : K0 ~ K3, RO ~R3
- Output form at STOP mode : D4 ~D5 pins "L" or keep before stop mode

Electrical Characteristics

Absolute maximum ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Max. rating	Unit
Supply Voltage	V_{DD}	$-0.3 \sim 5.0$	V
Power dissipation	P_{D}	$700{ }^{*}$	mW
Storage temperature range	Tstg	$-55 \sim 125$	${ }^{\circ} \mathrm{C}$
Input voltage	V_{IN}	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Output voltage	$\mathrm{V}_{\text {OUT }}$	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V

* Thermal derating above $25^{\circ} \mathrm{C}: 6 \mathrm{~mW}$ per degree ${ }^{\circ} \mathrm{C}$ rise in temperature.

Recommended operating condition

Parameter	Symbol	Condition	Rating	Unit
Supply Voltage	V_{DD}	$2.4 \mathrm{MHz} \sim 4 \mathrm{MHz}$	$2.0 \sim 3.6$	V
Operating temperature	Topr	-	$-20 \sim+70$	${ }^{\circ} \mathrm{C}$

Electrical characteristics $\left(\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}\right)$

Parameter		Symbol	Limits			Unit	Condition	
		Min.	Typ.	Max.				
Input H current			$\mathrm{I}_{\text {IH }}$	-	-	1	uA	$\mathrm{VI}=\mathrm{V}_{\mathrm{DD}}$
K Pull-up Resistance		$\mathrm{R}_{\mathrm{PU} 1}$	70	140	300	k Ω	$\mathrm{VI}=\mathrm{GND}$	
R Pull-up Resistance		$\mathrm{R}_{\text {PU2 }}$	70	140	300	k8	VI=GND, Output off	
Feedback Resistance		$\mathrm{R}_{\text {FD }}$	0.3	1.0	3.0	M 2	$\mathrm{V}_{\mathrm{OSC} 1}=\mathrm{GND}, \mathrm{V}_{\text {OSC2 }}=\mathrm{VDD}$	
K, R input H voltage		$\mathrm{V}_{\mathrm{H} 1}$	2.1	-	-	V	-	
K, R input L voltage		$\mathrm{V}_{\text {IL1 }}$	-	-	0.9	V	-	
D. R output L voltage		$\mathrm{V}_{\mathrm{OL2}}{ }^{*} 1$	-	0.15	0.4	V	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$	
OSC2 output L voltage		$\mathrm{V}_{\text {OL3 }}$	-	0.4	0.9	V	$\mathrm{I}_{\mathrm{OL}}=150 \mathrm{uA}$	
OSC2 output H voltage		$\mathrm{V}_{\text {ОН3 }}$	2.1	2.5	-	V	$\mathrm{I}_{\mathrm{OH}}=-150 \mathrm{uA}$	
REMOUT output L current		$\mathrm{I}_{\text {OL1 }}$		250		mA	$\mathrm{V}_{\mathrm{OL}}=0.3 \mathrm{~V}$	
REMOUT leakage current		$\mathrm{l}_{\text {OLK1 }}$	-	-	1	uA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}$, Output off	
D, R output leakage current		$\mathrm{l}_{\text {OLK2 }}$	-	-	1	uA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}$, Output off	
Current on STOP mode		$\mathrm{I}_{\text {STP }}$	-	-	1	uA	At STOP mode	
Operating supply current		$\mathrm{I}_{\mathrm{DD}}{ }^{*} 2$	-	0.5	1.5	mA	$\mathrm{f}_{\mathrm{OSC}}=4 \mathrm{MHz}$	
System clock frequency	$\mathrm{f}_{\text {Osc }} / 48$	$\mathrm{f}_{\text {OSC }}$	2.4	-	4	MHz	MHZ version	

*1 Refer to Fig. 1-6 < I $\mathrm{ILL2}$ vs. $\mathrm{V}_{\mathrm{OL} 2}$ Graph>
*2 $I_{D D}$ is measured at RESET mode.

Fig 1-6. $\mathrm{I}_{\mathrm{OL} 2}$ vs. V OL 2 Graph. (D, R Port)

HMS38112	1
HMS39112	2
ARCHITECTURE	3
INSTRUCTION	4

APPLICATION	5

CHAPTER 2. HMS39112

Outline of characteristics

The HMS39112 is remote control transmitter which uses CMOS technology
This enables transmission code outputs of different configurations, multiple custom code output, and double push key output for easy fabrication.
The HMS39112 is suitable for remote control of TV, VCR, FANS, Air-conditioners, Audio Equipments, Toys, Games etc. It is possible to structure the 8×7 key matrix.

Characteristics

- Program memory : 1,024 bytes
- Data memory : 32×4 bits
- 43 types of instruction set
- 3 levels of subroutine nesting
- Operating frequency : $2.4 \mathrm{MHz} \sim 4 \mathrm{MHz}$
- Instruction cycle : $\mathrm{f}_{\mathrm{Osc}} / 48$
- CMOS process (Single 3.0V power supply)
- Stop mode (Through internal instruction)
- Released stop mode by key input(mask option)
- Built in Power-on Reset circuit
- Built in Low Voltage reset circuit
- Built in a watch dog timer (WDT)
- Low operating voltage : 2.0~3.6V
- 20 pin PDIP/SOP/SSOP package

Block Diagram

Fig 2-1 Block Diagram

Pin Assignment

Fig 2-2 HMS39112 Pin Assignment (20 PIN)

Pin Dimension

Fig 2-3. 20PDIP (300MIL) Pin Dimension (UNIT: INCH)

Fig 2-4. 20SOP (300MIL) Pin Dimension (UNIT : mm)

Fig 2-5. 20SSOP (150MIL) Pin Dimension (UNIT : INCH)

Pin Description and Circuit

Pin Description

Pin	I/O	Function
VDD	-	Connected to 2.0~3.6V power supply
GND	-	Connected to OV power supply.
K0 ~ K3	Input	4-bit input port with built in pull-up resistor. STOP mode is released by "L" input of each pin.(masked option)
D0 ~ D6	Output	Each can be set and reset independently. The output is the structure of N -channel-open-drain.
R0 ~ R1	Input	2-bit input port with built in pull-up resistor. STOP mode is released by "L" input of each pin.(masked option)
R2 ~ R3	I/O	2-bit I/O port. (Input mode is set only when each of them output "H".) In outputting, each can be set and reset independently(or at once.) The output is in the form of C-MOS. STOP mode is released by "L" input of each pin. Pull-up resistor and STOP release mode can be respectively selected as masked option for each pin. (It is released by "L" input at STOP)
OSC1	Input	Oscillator input. Input to the oscillator circuit and connection point for ceramic resonator. A feedback resistor is connected between this pin and OSC2.
OSC2	Output	Connect a resonator between this pin and OSC1.
REMOUT	Output	High current output port for driving I.R.LED. The output is in the form N -channel open drain.

Pin Circuit

Pin	I/O	I/O circuit	Note
R0 ~ R1	1		- Built in MOS Tr for pull-up, about 140ks.
R2 ~ R3	I/O		- CMOS output. - "H" output at reset. - Built in MOS Tr for pull-up, about 140ks.
K0 ~ K3	1		- Built in MOS Tr for pull-up, about 140ks.
D0 ~ D6	O		- Open drain output. - "L" output at reset. - D0~D3 are "L" output at STOP MODE. -D4 ~D6 pins "L" or keep before stop mode At STOP MODE(option)
REMOUT	O		- Open drain output - "L" output at reset. - High current output source.

Optional Features

The HMS39112 offers the following optional features.
These options are masked.

- I/O terminals having pull-up resistor : R2 ~ R3
- Input terminals having STOP release mode : K0 ~ K3, R0 ~ R3
- Output form at STOP mode : D4 ~D6 pins "L" or keep before stop mode

Electrical Characteristics

Absolute maximum ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Max. rating	Unit
Supply Voltage	V_{DD}	$-0.3 \sim 5.0$	V
Power dissipation	P_{D}	$700{ }^{*}$	mW
Storage temperature range	Tstg	$-55 \sim 125$	${ }^{\circ} \mathrm{C}$
Input voltage	V_{IN}	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V
Output voltage	$\mathrm{V}_{\mathrm{OUT}}$	$-0.3 \sim \mathrm{~V}_{\mathrm{DD}}+0.3$	V

* Thermal derating above $25^{\circ} \mathrm{C}: 6 \mathrm{~mW}$ per degree ${ }^{\circ} \mathrm{C}$ rise in temperature.

Recommended operating condition

Parameter	Symbol	Condition	Rating	Unit
Supply Voltage	V_{DD}	$2.4 \mathrm{MHz} \sim 4 \mathrm{MHz}$	$2.0 \sim 3.6$	V
Operating temperature	Topr	-	$-20 \sim+70$	${ }^{\circ} \mathrm{C}$

Electrical characteristics $\left(\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}\right)$

Parameter		Symbol	Limits			Unit	Condition	
		Min.	Typ.	Max.				
Input H current			I_{H}	-	-	1	uA	$\mathrm{VI}=\mathrm{V}_{\mathrm{DD}}$
K Pull-up Resistance		$\mathrm{R}_{\text {PU1 }}$	70	140	300	k Ω	$\mathrm{VI}=\mathrm{GND}$	
R Pull-up Resistance		$\mathrm{R}_{\text {PU2 }}$	70	140	300	k 2	VI=GND, Output off	
Feedback Resistance		$\mathrm{R}_{\text {FD }}$	0.3	1.0	3.0	M2	$\mathrm{V}_{\mathrm{OSC} 1=\mathrm{GND}, \mathrm{V}_{\mathrm{OSC} 2}=\mathrm{VDD}}$	
K, R input H voltage		$\mathrm{V}_{\mathrm{HH} 1}$	2.1	-	-	V	-	
K, R input L voltage		$\mathrm{V}_{\text {IL1 }}$	-	-	0.9	V	-	
D. R output L voltage		$\mathrm{V}_{\mathrm{OL2}}{ }^{* 1}$	-	0.15	0.4	V	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$	
OSC2 output L voltage		$\mathrm{V}_{\text {OL3 }}$	-	0.4	0.9	V	$\mathrm{l}_{\mathrm{OL}}=150 \mathrm{uA}$	
OSC2 output H voltage		$\mathrm{V}_{\mathrm{OH} 3}$	2.1	2.5	-	V	$\mathrm{I}_{\mathrm{OH}}=-150 \mathrm{uA}$	
REMOUT output L current		$\mathrm{IOLT}^{*}{ }^{\text {2 }}$	0.5	1.1	3	mA	$\mathrm{V}_{\text {OL1 }}=0.4 \mathrm{~V}$	
REMOUT output H current		$\mathrm{IOH1}^{*} 3$	-5	-15	-30	mA	$\mathrm{V}_{\mathrm{OH} 1}=2 \mathrm{~V}$	
D, R output leakage current		$\mathrm{l}_{\text {OLK2 }}$	-	-	1	uA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$, Output off	
Current on STOP mode		$\mathrm{I}_{\text {STP }}$	-	-	1	uA	At STOP mode	
Operating supply current		I_{DD} *4	-	0.5	1.5	mA	$\mathrm{f}_{\mathrm{OSc}}=4 \mathrm{MHz}$	
System clock frequency	$\mathrm{f}_{\text {OSC }} / 48$	$\mathrm{f}_{\text {OSC }}$	2.4	-	4	MHz	MHZ version	

*1 Refer to Fig.2-6 < I I OL 2 vs. $\mathrm{V}_{\mathrm{OL} 2}$ Graph>
*2 Refer to Fig. $2-7$ < I OL1 vs. $V_{\text {OL1 }}$ Graph>
*3 Refer to Fig.2-8 < $\mathrm{I}_{\mathrm{OH} 1}$ vs. $\mathrm{V}_{\mathrm{OH} 1}$ Graph>
*4 $I_{D D}$ is measured at RESET mode.

Fig 2-6. $\mathrm{I}_{\mathrm{OL} 2}$ vs. $\mathrm{V}_{\mathrm{OL} 2}$ Graph. (D, R Port)

Fig 2-7. $\mathrm{I}_{\mathrm{OL} 1}$ vs $\mathrm{V}_{\mathrm{OL} 1}$ Graph (REMOUT Port)

Fig 2-8. $\mathrm{I}_{\mathrm{OH} 1}$ vs $\mathrm{V}_{\mathrm{OH} 1}$ Graph (REMOUT Port)

HMS38112	1
HMS39112	2

ARCHITECTURE	3

INSTRUCTION	4

APPLICATION	5

CHAPTER 3. Architecture

Program Memory

The HMS38112/39112 can incorporate maximum 1,024 words (64 words $\times 16$ pages $\times 8$ bits) for program memory. Program counter PC (A0~A5) and page address register (A6~A9) are used to address the whole area of program memory having an instruction (8bits) to be next executed.
The program memory consists of 64 words on each page, and thus each page can hold up to 64 steps of instructions.
The program memory is composed as shown below.

Fig 3-1 Configuration of Program Memory

Address Register

The following registers are used to address the ROM.

- Page address register (PA) :

Holds ROM's page number ($0 \sim \mathrm{Fh}$) to be addressed.

- Page buffer register (PB) :

Value of PB is loaded by an LPBI command when newly addressing a page.
Then it is shifted into the PA when rightly executing a branch instruction (BR) and a subroutine call (CAL).

- Program counter (PC) :

Available for addressing word on each page.

- Stack register (SR) :

Stores returned-word address in the subroutine call mode.
(1) Page address register and page buffer register :

Address one of pages \#0 to \#15 in the EPROM by the 4-bit binary counter. Unlike the program counter, the page address register is usually unchanged so that the program will repeat on the same page unless a page changing command is issued. To change the page address, take two steps such as (1) writing in the page buffer what page to jump (execution of LPBI) and (2) execution of BR or CAL, because instruction code is of eight bits so that page and word can not be specified at the same time.
In case a return instruction (RTN) is executed within the subroutine that has been called in the other page, the page address will be changed at the same time.
(2) Program counter :

This 6-bit binary counter increments for each fetch to address a word in the currently addressed page having an instruction to be next executed.
For easier programming, at turning on the power, the program counter is reset to the zero location. The PA is also set to "0". Then the program counter specifies the next address in random sequence.
When BR, CAL or RTN instructions are decoded, the switches on each step are turned off not to update the address. Then, for BR or CAL, address data are taken in from the instruction operands (a_{0} to a_{5}), or for RTN, and address is fetched from stack register No. 1.
(3) Stack register :

This stack register provides two stages each for the program counter (6bits) and the page address register (4bits) so that subroutine nesting can be made on two levels.

Data Memory (RAM)

Up to 32 nibbles (16 words $\times 2$ pages $\times 4$ bits) is incorporated for storing data. The whole data memory area is indirectly specified by a data pointer (X,Y). Page number is specified by zero bit of X register, and words in the page by 4 bits in Y-register. Data memory is composed in 16 nibbles/page. Figure $4-2$ shows the configuration.

Fig 3-2 Composition of Data Memory

X-register (X)

X -register is consist of $2 \mathrm{bit}, \mathrm{X0}$ is a data pointer of page in the RAM, X 1 is reserved.

	$\mathbf{X 1 = 0}$	$\mathbf{X 1 = 1}$
$\mathrm{Y}=0$	D0	Reserved
$\mathrm{Y}=1$	D1	Reserved

Table 3-1 Mapping table between X and Y register

Y-register (Y)

Y-register has 4 bits. It operates as a data pointer or a general-purpose register. Y -register specifies an address $\left(\mathrm{a}_{0} \sim \mathrm{a}_{3}\right)$ in a page of data memory, as well as it is used to specify an output port. Further it is used to specify a mode of carrier signal outputted from the REMOUT port. It can also be treated as a generalpurpose register on a program.

Accumulator (A_{cc})

The 4-bit register for holding data and calculation results.

Arithmetic and Logic Unit (ALU)

In this unit, 4bits of adder/comparator are connected in parallel as it's main components and they are combined with status latch and status logic (flag.)
(1) Operation circuit (ALU) :

The adder/comparator serves fundamentally for full addition and data comparison. It executes subtraction by making a complement by processing an inversed output of $A_{C C}\left(A_{c C}+1\right)$
(2) Status logic :

This is to bring an ST, or flag to control the flow of a program. It occurs when a specified instruction is executed in three cases such as overflow or underflow in operation and two inputs unequal.

State Counter (SC)

A fundamental machine cycle timing chart is shown below. Every instruction is one byte length. Its execution time is the same. Execution of one instruction takes 6 clocks for fetch cycle and 6 clocks for execute cycle (12 clocks in total). Virtually these two cycles proceed simultaneously, and thus it is apparently completed in 6 clocks (one machine cycle). Exceptionally BR, CAL and RTN instructions is normal execution time since they change an addressing sequentially. Therefore, the next instruction is prefetched so that its execution is completed within the fetch cycle.

Fig. 3-3 Fundamental timing chart

Clock Generator

The HMS38112/39112 have an internal clock oscillator. The oscillator circuit is designed to operate with an external ceramic resonator.
Oscillator circuit is able to organize by connecting ceramic resonator to outside.

* It is necessary to connect capacitor to outside in order to change ceramic resonator, you must refer to a manufacturer`s resonator matching guide.

HMS38112	3.64 MHz	4.00 MHz
MURATA	CSTLS3M64G56-B0	CSTLS3M64G56-B0
CORETECH	CRTL3.64MR	CRTL4.00MR
TDK	FCR3.64MC5	FCR4.0MC5

* All type have the built-in loading capacitors.

Pulse Generator

The following frequency and duty ratio are selected for carrier signal outputted from the REMOUT port depending on a PMR (Pulse Mode Register) value set in a program.

PMR	REMOUT signal	
0	$\mathrm{~T}=1 / \mathrm{f}_{\mathrm{PUL}}=96 / \mathrm{f}_{\mathrm{OSC}}$,	$\mathrm{T} 1 / \mathrm{T}=1 / 2$
1	$\mathrm{~T}=1 / \mathrm{f}_{\mathrm{PUL}}=96 / \mathrm{f}_{\mathrm{OSC}}$,	$\mathrm{T} 1 / \mathrm{T}=1 / 3$
2	$\mathrm{~T}=1 / \mathrm{f}_{\mathrm{PUL}}=64 / \mathrm{f}_{\mathrm{OSC}}$,	$\mathrm{T} 1 / \mathrm{T}=1 / 2$
3	$\mathrm{~T}=1 / \mathrm{f}_{\mathrm{PUL}}=64 / \mathrm{f}_{\mathrm{OSC}}$,	$\mathrm{T} 1 / \mathrm{T}=1 / 4$
4	$\mathrm{~T}=1 / \mathrm{f}_{\mathrm{PUL}}=88 / \mathrm{f}_{\mathrm{OSC}}$,	$\mathrm{T} 1 / \mathrm{T}=4 / 11$
5	No Pulse (same to D0 $\sim \mathrm{D} 9)$	
6	$\mathrm{~T}=1 / \mathrm{f}_{\mathrm{PUL}}=96 / \mathrm{f}_{\mathrm{OSc}}$,	$\mathrm{T} 1 / \mathrm{T}=1 / 4$
7	No pulse (same to D0 $\sim \mathrm{D} 9)$	

* Default value is "0"

Table 3-2 PMR selection table

Reset Operation

HMS38112/39112 have three reset sources. One is a built-in Power-on reset circuit, another is a built-in Low VDD Detection circuit, the other is the overflow of Watch Dog Timer (WDT). All reset operations are internal in the HMS38112.

Built-in Power On Reset Circuit

HMS38112/39112 has a built-in Power-on reset circuit consisting of an about 1 M8 Resistor and a 3pF Capacitor. When the Power-on reset pulse occurs, system reset signal is latched and WDT is cleared. After the overflow time of WDT ($2^{13} \times$ System clock time), system reset signal is released.

Fig. 3-4 Power-On Reset Circuit and Timing Chart

Built-in Low VDD Reset Circuit

HMS38112/39112 have a Low VDD detection circuit.
If VDD become Reset Voltage of Low VDD Detection circuit at a active status, system reset occur and WDT is cleared.
After VDD is increased upper Reset Voltage again, WDT is re-counted and if WDT is overflowed, system reset is released.

Fig. 3-5 Low Voltage Detection diagram

Watch Dog Timer (WDT)

Watch dog timer is organized binary of 14 steps. The signal of $f_{\text {Osc }} / 48$ cycle comes in the first step of WDT after WDT reset. If this counter was overflowed, reset signal automatically come out so that internal circuit is initialized.
The overflow time is $8 \times 6 \times 2^{13} / \mathrm{f}_{\text {osc }}\left(108.026 \mathrm{~ms}\right.$ at $\left.\mathrm{f}_{\mathrm{OsC}}=3.64 \mathrm{MHz}\right)$
Normally, the binary counter must be reset before the overflow by using reset instruction (WDTR), Power-on reset pulse or Low VDD detection pulse.

* It is constantly reset in STOP mode. When STOP is released, counting is restarted. (Refer to STOP Operation>)

Fig 3-6 Block Diagram of Watch-dog Timer

STOP Operation

Stop mode can be achieved by STOP instructions.
In stop mode :

1. Oscillator is stopped, the operating current is low.
2. Watch dog timer is reset, D0~D3 output and REMOUT output are "L" .
3. Part other than WDT, D0~D3 output and REMOUT output have a value before come into stop mode.

Stop mode is released when one of K or R input is going to " L ".

1. State of D0~D3 output and REMOUT output is return to state of before stop mode is achieved.
2. After $2^{10} \times$ System clock time for stable oscillating, first instruction start to operate.
3. In return to normal operation, WDT is counted from zero again.

But, at executing stop instruction, if one of K or R input is chosen to "L", stop instruction is same to NOP instruction.

HMS38112	1
HMS39112	2

\section*{| ARCHITECTURE | 3 |
| :--- | :--- |}

CHAPTER 4. Instruction

INSTRUCTION FORMAT

All of the 43 instruction in HMS38112/39112 is format in two fields of OP code and operand which consist of eight bits. The following formats are available with different types of operands.
*Format I
All eight bits are for OP code without operand.
*Format II
Two bits are for operand and six bits for OP code.
Two bits of operand are used for specifying bits of RAM and X-register (bit 1 and bit 7 are fixed at " 0 ")
*Format III
Four bits are for operand and the others are OP code.
Four bits of operand are used for specifying a constant loaded in RAM or Yregister, a comparison value of compare command, or page addressing in ROM.
*Format IV
Six bits are for operand and the others are OP code.
Six bits of operand are used for word addressing in the ROM.

INSTRUCTION TABLE

The HMS38112/39112 provides the following 43 basic instructions.

	Category	Mnemonic	Function	ST ${ }^{* 1}$
1	Register to Register	LAY	$A \leftarrow Y$	S
2		LYA	$\mathrm{Y} \leftarrow \mathrm{A}$	S
3		LAZ	$\mathrm{A} \leftarrow 0$	S
4	RAM to Register	LMA	$\mathrm{M}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{A}$	S
5		LMAIY	$\mathrm{M}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{A}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	S
6		LYM	$\mathrm{Y} \leftarrow \mathrm{M}(\mathrm{X}, \mathrm{Y})$	S
7		LAM	$A \leftarrow M(X, Y)$	S
8		XMA	$A \leftrightarrow M(X, Y)$	S
9	Immediate	LYI i	$\mathrm{Y} \leftarrow \mathrm{i}$	S
10		LMIIY i	$\mathrm{M}(\mathrm{X}, \mathrm{Y}) \leftarrow \mathrm{i}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	S
11		LXI n	$\mathrm{X} \leftarrow \mathrm{n}$	S
12	RAM Bit Manipulation	SEM n	$\mathrm{M}(\mathrm{n}) \leftarrow 1$	S
13		REM n	$\mathrm{M}(\mathrm{n}) \leftarrow 0$	S
14		TM n	TEST M n) $=1$	E
15	ROM Address	BR a	if ST = 1 then Branch	S
16		CAL a	if ST = 1 then Subroutine call	S
17		RTN	Return from Subroutine	S
18		LPBI i	$\mathrm{PB} \leftarrow \mathrm{i}$	S
19	Arithmetic	AM	$A \leftarrow A+M(X, Y)$	C
20		SM	$A \leftarrow M(X, Y)-A$	B
21		IM	$A \leftarrow M(X, Y)+1$	C
22		DM	$A \leftarrow M(X, Y)-1$	B
23		IA	$A \leftarrow A+1$	S
24		IY	$Y \leftarrow Y+1$	C
25		DA	A $\leftarrow \mathrm{A}-1$	B

	Category	Mnemonic	Function	ST* ${ }^{\text {1 }}$
26	Arithmetic	DY	$\mathrm{Y} \leftarrow \mathrm{Y}-1$	B
27		EORM	$\mathrm{A} \leftarrow \mathrm{A} \oplus \mathrm{M}(\mathrm{X}, \mathrm{Y})$	S
28		NEGA	$\mathrm{A} \leftarrow \overline{\mathrm{A}}+1$	Z
29	Comparison	ALEM	TEST $\mathrm{A} \leq \mathrm{M}(\mathrm{X}, \mathrm{Y})$	E
30		ALEI i	TEST $\mathrm{A} \leq \mathrm{i}$	E
31		MNEZ	TEST M $(X, Y) \neq 0$	N
32		YNEA	TEST $\mathrm{Y} \neq \mathrm{A}$	N
33		YNEI i	TEST Y $\ddagger \mathrm{i}$	N
34		KNEZ	TEST K $=0$	N
35		RNEZ	TEST R $=0$	N
36	Input / Output	LAK	$\mathrm{A} \leftarrow \mathrm{K}$	S
37		LAR	$\mathrm{A} \leftarrow \mathrm{R}$	S
38		SO	Output $(Y) \leftarrow 1$ at HMS39112, 0 at HMS38112	S
39		RO	Output $(Y) \leftarrow 0$ at HMS39112, 1 at HMS39112	S
40	Control	WDTR	Watch Dog Timer Reset	S
41		STOP	Stop operation	S
42		LPY	PMR $\leftarrow \mathrm{Y}$	S
43		NOP	No operation	S

Note) $\mathrm{i}=0 \sim \mathrm{f}, \mathrm{n}=0 \sim 3, \mathrm{a}=6$ bit PC Address
*1 Column ST indicates conditions for changing status. Symbols have the following meanings

S: On executing an instruction, status is unconditionally set.
C : Status is only set when carry or borrow has occurred in operation.
B : Status is only set when borrow has not occurred in operation.
E : Status is only set when equality is found in comparison.
N : Status is only set when equality is not found in comparison.
Z : Status is only set when the result is zero.

Port Operation

DETAILS OF INSTRUCTION SYSTEM

All 43 basic instructions of the HMS38112/39112 are one by one described in detail below.

Description Form
Each instruction is headlined with its mnemonic symbol according to the instructions table given earlier.
Then, for quick reference, it is described with basic items as shown below. After that, detailed comment follows.

- Items :
- Naming: Full spelling of mnemonic symbol
- Status : Check of status function
- Format: Categorized into I to IV
- Operand: Omitted for Format ।
(1) LAY

Naming: Load Accumulator from Y-Register
Status: Set
Format: I
Function: $\quad A \leftarrow Y$
<Comment> Data of four bits in the Y-register is unconditionally transferred to the accumulator. Data in the Y -register is left unchanged.
(2) LYA

Naming: Load Y-register from Accumulator
Status: Set
Format: I
Function: $\quad Y \leftarrow A$
<Comment> Load Y-register from Accumulator
(3) LAZ

Naming: Clear Accumulator
Status: Set
Format: I
Function: $\quad A \leftarrow 0$
<Comment> Data in the accumulator is unconditionally reset to zero.
(4) LMA

Naming: Load Memory from Accumulator
Status : Set
Format: I
Function: $\quad M(X, Y) \leftarrow A$
<Comment> Data of four bits from the accumulator is stored in the RAM location addressed by the X-register and Y-register. Such data is left unchanged.
(5) LMAIY

Naming: Load Memory from Accumulator and Increment Y-Register
Status : Set
Format: I
Function: $\quad M(X, Y) \leftarrow A, Y \leftarrow Y+1$
<Comment> Data of four bits from the accumulator is stored in the RAM location addressed by the X-register and Y-register. Such data is left unchanged.
(6) LYM

Naming: Load Y-Register form Memory
Status: Set
Format : |
Function: $\quad Y \leftarrow M(X, Y)$
<Comment> Data from the RAM location addressed by the X-register and Y-register is loaded into the Y -register. Data in the memory is left unchanged.
(7) LAM

Naming: Load Accumulator from Memory
Status: Set
Format: I
Function: $\quad A \leftarrow M(X, Y)$
<Comment> Data from the RAM location addressed by the X-register and Y-register is loaded into the Y -register. Data in the memory is left unchanged.
(8) XMA

Naming: Exchanged Memory and Accumulator
Status: Set
Format: I
Function: $\quad M(X, Y) \leftrightarrow A$
<Comment> Data from the memory addressed by X-register and Y-register is exchanged with data from the accumulator. For example, this instruction is useful to fetch a memory word into the accumulator for operation and store current data from the accumulator into the RAM. The accumulator can be restored by another XMA instruction.
(9) LYI i

Naming: Load Y-Register from Immediate
Status: Set
Format: III
Operand: \quad Constant $0 \leq i \leq 15$
Function: $\quad \mathrm{Y} \leftarrow \mathrm{i}$
<Purpose> To load a constant in Y-register. It is typically used to specify Y-register in a particular RAM word address, to specify the address of a selected output line, to set Y-register for specifying a carrier signal outputted from OUT port, and to initialize Y-register for loop control. The accumulator can be restored by another XMA instruction.
<Comment> Data of four bits from operand of instruction is transferred to the Y -register.
(10) LMIIY i

Naming: Load Memory from Immediate and Increment Y-Register
Status: Set
Format: III
Operand: \quad Constant $0 \leq i \leq 15$
Function: $\quad M(X, Y) \leftarrow i, \quad Y \leftarrow Y+1$
<Comment> Data of four bits from operand of instruction is stored into the RAM location addressed by the X -register and Y -register. Then data in the Y -register is incremented by one.
(11) LXI n

Naming: Load X-Register from Immediate
Status: Set
Format: II
Operand: $\quad \mathrm{X}$ file address $0 \leq \mathrm{n} \leq 3$
Function: $\quad X \leftarrow n$
<Comment> A constant is loaded in X-register. It is used to set X -register in an index of desired RAM page. Operand of 1 bit of command is loaded in X-register.
(12) SEM n

Naming : Set Memory Bit
Status: Set
Format: II
Operand: \quad Bit address $0 \leq n \leq 3$
Function: $\quad M(X, Y, n) \leftarrow 1$
<Comment> Depending on the selection in operand of operand, one of four bits is set as logic 1 in the RAM memory addressed in accordance with the data of the X -register and Y -register.

(13) REM n

Naming: Reset Memory Bit
Status: Set
Format: II
Operand: \quad Bit address $0 \leq n \leq 3$
Function: $\quad M(X, Y, n) \leftarrow 0$
<Comment> Depending on the selection in operand of operand, one of four bits is set as logic 0 in the RAM memory addressed in accordance with the data of the X-register and Y-register.

(14) TM n

Naming:	Test Memory Bit
Status:	Comparison results to status
Format:	II
Operand:	Bit address $0 \leq n \leq 3$
Function :	$M(X, Y, n) \leftarrow 1 ?$
	$S T \leftarrow 1$ when $M(X, Y, n)=1, S T \leftarrow 0$ when $M(X, Y, n)=0$
<Purpose>	A test is made to find if the selected memory bit is logic. 1
	Status is set depending on the result.

(15) BR a

Naming: \quad Branch on status 1
Status: \quad Conditional depending on the status
Format: IV
Operand: Branch address a (Addr)
Function: \quad When $\mathrm{ST}=1, \mathrm{PA} \leftarrow \mathrm{PB}, \mathrm{PC} \leftarrow \mathrm{a}$ (Addr)
When $\mathrm{ST}=0, \mathrm{PC} \leftarrow \mathrm{PC}+1, \mathrm{ST} \leftarrow 1$
Note : PC indicates the next address in a fixed sequence that is actually pseudo-random count.
<Purpose> For some programs, normal sequential program execution can be change.
A branch is conditionally implemented depending on the status of results obtained by executing the previous instruction.
<Comment> - Branch instruction is always conditional depending on the status.
a. If the status is reset (logic 0), a branch instruction is not rightly executed but the next instruction of the sequence is executed.
b. If the status is set (logic 1), a branch instruction is executed as follows.

- Branch is available in two types - short and long. The former is for addressing in the current page and the latter for addressing in the other page. Which type of branch to exeute is decided according to the PB register. To execute a long branch, data of the PB register should in advance be modified to a desired page address through the LPBI instruction.
(16) CAL a

Naming: \quad Subroutine Call on status 1
Status: \quad Conditional depending on the status
Format: IV
Operand: \quad Subroutine code address a(Addr)
Function: \quad When $\mathrm{ST}=1, \mathrm{PC} \leftarrow \mathrm{a}$ (Addr)
$\mathrm{PA} \leftarrow \mathrm{PB}$
$\mathrm{SR} 1 \leftarrow \mathrm{PC}+1, \quad \mathrm{PSR} 1 \leftarrow \mathrm{PA}$
SR2 \leftarrow SR1 \quad PSR2 \leftarrow PSR1

SR3 \leftarrow SR2 \quad PSR3 \leftarrow PSR2
When $\mathrm{ST}=0 \quad \mathrm{PC} \leftarrow \mathrm{PC}+1 \quad \mathrm{~PB} \leftarrow \mathrm{PS} \quad \mathrm{ST} \leftarrow 1$
Note : PC actually has pseudo-random count against the next instruction.
<Comment> - In a program, control is allowed to be transferred to a mutual subroutine. Since a call instruction preserves the return address, it is possible to call the subroutine from different locations in a program, and the subroutine can return control accurately to the address that is preserved by the use of the call return instruction (RTN).
Such calling is always conditional depending on the status.
a. If the status is reset, call is not executed.
b. If the status is set, call is rightly executed.

The subroutine stack (SR) of three levels enables a subroutine to be manipulated on three levels. Besides, a long call (to call another page) can be executed on any level.

- For a long call, an LPBI instruction should be executed before the CAL. When LPBI is omitted (and when PA=PB), a short call (calling in the same page) is executed.

(17) RTN

Naming :	Return from Subroutine
Status:	Set
Format :	Set
Function :	$\mathrm{PC} \leftarrow \mathrm{SR} 10 \mathrm{PA}, \mathrm{PB} \leftarrow \mathrm{PSR} 1$
	SR1 \leftarrow SR2 2 PSR1 \leftarrow PSR2
	SR2 \leftarrow SR3 \quad PSR2 \leftarrow PSR3
	SR3 \leftarrow SR3 \quad PSR3 \leftarrow PSR2
	ST $\leftarrow 1$
<Purpose>	Control is returned from the called subroutine to the calling program.
<Comment>	Control is returned to its home routine by transferring to the PC the data of the return address that has been saved in the stack register (SR1).
	At the same time, data of the page stack register (PSR1) is transferred to the PA and PB.

(18) LPBI i

Naming: Load Page Buffer Register from Immediate
Status: Set
Format: III
Operand: \quad ROM page address $0 \leq i \leq 15$
Function: $\quad \mathrm{PB} \leftarrow \mathrm{i}$
<Purpose> A new ROM page address is loaded into the page buffer register (PB).
This loading is necessary for a long branch or call instruction.
<Comment> The PB register is loaded together with three bits from 4 bit operand.
(19) AM

Naming: Add Accumulator to Memory and Status 1 on Carry
Status: Carry to status
Format: |
Function : $\quad A \leftarrow M(X, Y)+A, S T \leftarrow 1$ (when total >15),
ST $\leftarrow 0($ when total $\leq 15)$
<Comment> Data in the memory location addressed by the X and Y -register is added to data of the accumulator. Results are stored in the accumulator. Carry data as results is transferred to status. When the total is more than 15, a carry is caused to put "1" in the status. Data in the memory is not changed.

(20) SM

Naming: Subtract Accumulator to Memory and Status 1 Not Borrow
Status: Carry to status
Format :
Function :
$A \leftarrow M(X, Y)-A$
$S T \leftarrow 1($ when $A \leq M(X, Y))$
$S T \leftarrow 0($ when $A>M(X, Y))$
<Comment> Data of the accumulator is, through a 2`s complemental addition, subtracted from the memory word addressed by the Y-register. Results are stored in the accumulator. If data of the accumulator is less than or equal to the memory word, the status is set to indicate that a borrow is not caused.

If more than the memory word, a borrow occurs to reset the status to " 0 ".
(21) IM

Naming: Increment Memory and Status 1 on Carry
Status: Carry to status
Format: |
Function : $\quad A \leftarrow M(X, Y)+1 \quad S T \leftarrow 1($ when $M(X, Y) \geq 15)$

$$
\text { ST } \leftarrow 0(\text { when } \mathrm{M}(\mathrm{X}, \mathrm{Y})<15)
$$

<Comment> Data of the memory addressed by the X and Y -register is fetched. Adding 1 to this word, results are stored in the accumulator. Carry data as results is transferred to the status.
When the total is more than 15 , the status is set. The memory is left unchanged.
(22) DM

Naming: Decrement Memory and Status 1 on Not Borrow
Status: Carry to status
Format: |
Function: $\quad A \leftarrow M(X, Y)-1 \quad S T \leftarrow 1($ when $M(X, Y) \geq 1)$
$S T \leftarrow 0($ when $M(X, Y)=0)$
<Comment> Data of the memory addressed by the X and Y-register is fetched, and one is subtracted from this word (addition of Fh)> Results are stored in the accumulator. Carry data as results is transferred to the status. If the data is more than or equal to one, the status is set to indicate that no borrow is caused. The memory is left unchanged.
(23) IA

Naming: Increment Accumulator
Status: Set
Format: |
Function: $\quad A \leftarrow A+1$
<Comment> Data of the accumulator is incremented by one. Results are returned to the accumulator.
A carry is not allowed to have effect upon the status.
(24) IY

Naming: \quad Increment Y -Register and Status 1 on Carry
Status: Carry to status
Format: I
Function: $\quad Y \leftarrow Y+1$
ST $\leftarrow 1$ (when $Y=15)$
ST $\leftarrow 0($ when $Y<15)$
<Comment> Data of the Y -register is incremented by one and results are returned to the Y -register.
Carry data as results is transferred to the status. When the total is more than 15 , the status is set.
(25) DA

Naming: Decrement Accumulator and Status 1 on Borrow
Status: Carry to status
Format :
Function:
$A \leftarrow A-1$
ST $\leftarrow 1$ (when $A \geq 1$)
ST $\leftarrow 0($ when $A=0)$
<Comment> Data of the accumulator is decremented by one. As a result (by addition of Fh), if a borrow is caused, the status is reset to " 0 " by logic. If the data is more than one, no borrow occurs and thus the status is set to " 1 ".
(26) DY

Naming: Decrement Y-Register and Status 1 on Not Borrow
Status: Carry to status
Format: |
Function: $\quad Y \leftarrow Y-1 \quad S T \leftarrow 1($ when $Y \geq 1)$
ST $\leftarrow 0($ when $Y=0)$
<Purpose> Data of the Y -register is decremented by one.
<Comment> Data of the Y-register is decremented by one by addition of minus 1 (Fh).
Carry data as results is transferred to the status. When the results is equal to 15 , the status is set to indicate that no borrow has not occurred.
(27) EORM

Naming: Exclusive or Memory and Accumulator
Status: Set
Format: |
Function: $\quad A \leftarrow M(X, Y) \oplus A$
<Comment> Data of the accumulator is, through a Exclusive OR, subtracted from the memory word addressed by X and Y register. Results are stored into the accumulator.
(28) NEGA

Naming: \quad Negate Accumulator and Status 1 on Zero
Status: Carry to status
Format:
Function :
$\mathrm{A} \leftarrow \overline{\mathrm{A}}+1 \quad \mathrm{ST} \leftarrow 1($ when $\mathrm{A}=0)$
ST $\leftarrow 0$ (when A ! = 0)
<Purpose> The 2`s complement of a word in the accumulator is obtained. <Comment> The 2`s complement in the accumulator is calculated by adding one to the 1`s complement in the accumulator. Results are stored into the accumulator. Carry data is transferred to the status. When data of the accumulator is zero, a carry is caused to set the status to " 1 ".

(29) ALEM

Naming: Accumulator Less Equal Memory
Status: Carry to status
Format:
Function:
$A \leq M(X, Y) \quad S T \leftarrow 1($ when $A \leq M(X, Y))$
$S T \leftarrow 0($ when $A>M(X, Y))$
<Comment> Data of the accumulator is, through a complemental addition, subtracted from data in the memory location addressed by the X and Y -register. Carry data obtained is transferred to the status. When the status is " 1 ", it indicates that the data of the accumulator is less than or equal to the data of the memory word. Neither of those data is not changed.
(30) ALEI

Naming: Accumulator Less Equal Immediate
Status: Carry to status
Format: III
Function: $\quad A \leq$
ST $\leftarrow 1$ (when $\mathrm{A} \leq \mathrm{i})$
$\mathrm{ST} \leftarrow 0($ when $\mathrm{A}>\mathrm{i})$
<Purpose> Data of the accumulator and the constant are arithmetically compared.
<Comment> Data of the accumulator is, through a complemental addition, subtracted from the constant that exists in 4bit operand. Carry data obtained is transferred to the status. The status is set when the accumulator value is less than or equal to the
constant. Data of the accumulator is left unchanged.

(31) MNEZ

Naming: Memory Not Equal Zero
Status: Comparison results to status
Format:
Function:
ST $\leftarrow 0($ when $M(X, Y)=0)$
<Purpose> A memory word is compared with zero.
<Comment> Data in the memory addressed by the X and Y -register is logically compared with zero. Comparison data is thransferred to the status. Unless it is zero, the status is set.
(32) YNEA

Naming: Y-Register Not Equal Accumulator
Status: \quad Comparison results to status
Format :
Function: $\quad Y \neq A \quad S T \leftarrow 1($ when $Y \neq A)$
ST $\leftarrow 0($ when $Y=A)$
<Purpose> Data of Y-register and accumulator are compared to check if they are not equal.
<Comment> Data of the Y-register and accumulator are logically compared. Results are transferred to the status. Unless they are equal, the status is set.

(33) YNEI

Naming: Y-Register Not Equal Immediate
Status: \quad Comparison results to status
Format: III
Operand: \quad Constant $0 \leq i \leq 15$
Function: $\quad Y \neq i \quad S T \leftarrow 1($ when $Y \neq i)$

$$
\text { ST } \leftarrow 0 \text { (when } \mathrm{Y}=\mathrm{i})
$$

<Comment> The constant of the Y-register is logically compared with 4bit operand. Results are transferred to the status. Unless the operand is equal to the constant, the status is set.
(34) KNEZ

Naming: K Not Equal Zero
Status: The status is set only when not equal
Format: |
Function : \quad When $\mathrm{K} \neq 0$, ST $\leftarrow 1$
<Purpose> A test is made to check if K is not zero.
<Comment> Data on K are compared with zero. Results are transferred to the status. For input data not equal to zero, the status is set.
(35) RNEZ

Naming: R Not Equal Zero
Status: The status is set only when not equal
Format: |
Function: \quad When $R \neq 0$, $\mathrm{ST} \leftarrow 1$
<Purpose> A test is made to check if R is not zero.
<Comment> Data on R are compared with zero. Results are transferred to the status. For input data not equal to zero, the status is set.
(36) LAK

Naming: Load Accumulator from K
Status: Set
Format: |
Function: $\quad A \leftarrow K$
<Comment> Data on K are transferred to the accumulator
(37) LAR

Naming: Load Accumulator from R
Status: Set
Format: |
Function: $\quad A \leftarrow R$
<Comment> Data on R are transferred to the accumulator
(38) SO

Naming: Set Output Register Latch
Status: Set
Format: |
Function: $\quad \mathrm{D}(\mathrm{Y}) \leftarrow 1 \quad 0 \leq \mathrm{Y} \leq 7$
REMOUT $\leftarrow 1(\mathrm{PMR}=5) \quad \mathrm{Y}=8$
D0~D9 $\leftarrow 1$ (High-Z) $\quad Y=9$
$R(Y) \leftarrow 1 \quad A h \leq Y \leq D h$
$R \leftarrow 1 \quad Y=E h$
$D 0 \sim D 9, R \leftarrow 1 \quad Y=F h$
<Purpose> A single D output line is set to logic 1, if data of Y-register is between 0 to 7.
Carrier frequency come out from REMOUT port, if data of Y-register is 8.
All D output line is set to logic 1 , if data of Y-register is 9. It is no operation, if data of Y-register between 10 to 15.
When Y is between Ah and Dh , one of R output lines is set at logic 1.
When Y is Eh, the output of R is set at logic 1 .
When Y is Fh, the output $\mathrm{D} 0 \sim \mathrm{D} 9$ and R are set at logic 1 .
<Comment> Data of Y-register is between 0 to 7, selects appropriate D output.
Data of Y-register is 8, selects REMOUT port.
Data of Y-register is 9 , selects all D port.
Data in Y-register, when between Ah and Dh, selects an appropriate R output (R0~R3).
Data in Y-register, when it is Eh, selects all of R0~R3.
Data in Y-register, when it is Fh, selects all of D0~D9 and R0~R3.
(39) RO

Naming : Reset Output Register Latch
Status : Set
Format :
Function:

$\mathrm{D}(\mathrm{Y}) \leftarrow 0$	$0 \leq \mathrm{Y} \leq 7$
$\mathrm{REMOUT} \leftarrow 0$	$\mathrm{Y}=8$
$\mathrm{D} 0 \sim \mathrm{D} 9 \leftarrow 0$	$\mathrm{Y}=9$
$\mathrm{R}(\mathrm{Y}) \leftarrow 0$	$\mathrm{Ah} \leq \mathrm{Y} \leq \mathrm{Dh}$
$\mathrm{R} \leftarrow 0$	$\mathrm{Y}=\mathrm{Eh}$
$\mathrm{D} 0 \sim \mathrm{D} 9, \mathrm{R} \leftarrow 0$	$\mathrm{Y}=\mathrm{Fh}$

<Purpose> A single D output line is set to logic 0 , if data of Y -register is between 0 to 9 .
REMOUT port is set to logic 0 , if data of Y-register is 9 .
All D output line is set to logic 0 , if data of Y-register is 9 .
When Y is between $A h$ and $D h$, one of R output lines is set at logic 0 .
When Y is Eh, the output of R is set at logic 0
When Y is Fh, the output $\mathrm{D} 0 \sim \mathrm{D} 9$ and R are set at logic 1 .
<Comment> Data of Y-register is between 0 to 7, selects appropriate D output.
Data of Y -register is 8 , selects REMOUT port.
Data of Y-register is 9, selects D port.
Data in Y-register, when between Ah and Dh, selects an appropriate R output (R0~R3).
Data in Y-register, when it is Eh, selects all of R0~R3.
Data in Y-register, when it is Fh, selects all of D0~D9 and R0~R3.
(40) WDTR

Naming: Watch Dog Timer Reset
Status: Set
Format :
Function: Reset Watch Dog Timer (WDT)
<Purpose> Normally, you should reset this counter before overflowed counter for dc watch dog timer. this instruction controls this reset signal.

(41) STOP

Naming : STOP
Status: Set
Format : |
Function: Operate the stop function
<Purpose> Stopped oscillator, and little current.
(See 1-12 page, STOP function.)
(42) LPY

Naming: Pulse Mode Set
Status: Set
Format: |
Function: $\quad P M R \leftarrow Y$
<Comment> Selects a pulse signal outputted from REMOUT port.
(43) NOP

Naming:	No Operation
Status :	Set
Format :	I
Function:	No operation

HMS38112	1
HMS39112	2

ARCHITECTURE	3

INSTRUCTION	4

APPLICATION	5

Guideline for S/W

1. All rams need to be initialized to zero in reset address for proper design.
2. Make the output ports `H` after reset.
3. Do not use WDTR instruction in subroutine.
4. Before reading the input port the waiting time should be more than 200 uS .
5. To decrease current consumption, make the output port as high in normal routine except for key scan strobe and STOP mode.
6. We recommend you do not use all 64 bytes in a page. You had better write ` BR $\$$ ' in unused area. This will help you prevent unusual operation of MCU.
7. Be careful not to use long call or branch (CALL,BL) with arithmetic manipulation. If you want to use branch right after arithmetic manipulation, the long call or branch will be against your intention.
ex) LAR ; The value of R ports $->$ Accumulator
ALEI 14; $A \leq 14: S=1, \quad A>14: S=0$
$B L$ TRUE ; S is always 1 because $B L$ is composed of $L P B I$ and $B R$.
-------------- Fail

LAR ; The value of R ports -> Accumulator
ALEI 14; $A \leq 14: S=1, \quad A>14: S=0$
BR TRUE; When S is 1 Branch will occur. Otherwise Branch will not occur and
LAK ; next instruction will be operated.
Right

HMS38112 Circuit Diagram

$-6=1+7$

HMS39112 Circuit Diagram

$-\phi=\frac{1}{7}$

Truth Table for example program

CUSTOM:04H

KEY NO.	DATA(H)	KEY NO.	DATA(H)
K01	00	K29	1 C
K02	01	K30	$1 D$
K03	02	K31	$1 E$
K04	03	K32	$1 F$
K05	04	K33	20
K06	05	K34	21
K07	06	K35	22
K08	07	K36	23
K09	08	K37	24
K10	09	K38	25
K11	$0 A$	K39	26
K12	$0 B$	K40	27
K13	$0 C$	K41	28
K14	$0 D$	K42	29
K15	$0 E$	K43	$2 A$
K16	$0 F$	K44	$2 B$
K17	10	K45	$2 C$
K18	11	K46	$2 D$
K19	12	K47	$2 E$
K20	13	K48	$2 F$
K21	14	K49	30
K22	15	K50	31
K23	16	K51	32
K24	17	K52	33
K25	18	K53	34
K26	19	K54	35
K27	$1 A$	K55	36
K28	$1 B$	K56	37

Output waveform of uPD6121G
A single pulse, modulated with 37.917 KHz signal at 3.64 MHz

- Configuration of Flame

- Repeat code

- Bit Description

- Flame Interval : Tf

The transmitted waveform as long as a key is depressed

Chapter 5. Application

Example program - uPD6121G

Chapter 5. Application

T IM5 7	NOP
T IM56	NOP
T IM5 5	NOP
TIM54	NOP
T IM53	NOP
T IM5 2	NOP
T IM5 1	NOP
T IM50	NOP
T IM49	NOP
T IM 48	NOP
T IM47	NOP
T IM 46	NOP
T IM 45	NOP
T IM44	NOP
T I M 43	NOP
T IM 42	NOP
T IM4 1	NOP
T I M 40	NOP
T I M 39	NOP
T IM 38	NOP
T I M 37	NOP
T IM 36	NOP
T IM35	NOP
T IM 34	NOP
T IM 33	NOP
T IM 32	NOP
T I M 31	NOP
T IM 30	NOP
T I M 29	NOP
T IM 28	NOP
T IM 27	NOP
T IM26	NOP
T IM 25	NOP
T IM 24	NOP
T IM 23	NOP
T IM 22	NOP
T I M 21	NOP
T IM 20	NOP
T IM 19	NOP
T I M 18	NOP
T IM 17	NOP
T IM 16	NOP
T IM 15	NOP
T I M 14	NOP
T IM 13	NOP
T IM 12	NOP
T I M 11	NOP
T IM 10	NOP
T I M 09	NOP
T IM08	NOP
T IM07	NOP
T IM06	NOP
T IM 05	NOP
T IM 04	NOP
T I M 03	R T N

HMS38112 TEST B/D Example

1. Attach resonator to X1
2. Connect base and collector at Q1
3. Connect PGND and TRGND with jumper at E

* DS1 is connected to A. If D6 switch is on among DS1, A becomes D6 port.
* DS2 is connected to B. If D7 switch is on among DS2, B becomes D7 port.
* If D6 switch among SW49~SW56 is on at D, the key 49~56 can be used as D6 port.
* If D7 switch among SW57~SW64 is on at D, the key 57~64 can be used as D7 port.
* note : the position of SW49~56 and SW57~64 in B/D is changed. The reference position is right.
* If you want to increase the remote controller valid distance, you try to disconnect R 2 resistor and lessen R1 resistor.

HMS39112 TEST B/D Example

1. Attach resonator to X1
2. Attach 2222A transistor to Q1
3. Connect PGND and D6 with jumper at E
4. Attach about 150Ω to R3.

* DS1 is connected to A. If D6 switch is on among DS1, A becomes D6 port.
* DS2 is connected to B. If D7 switch is on among DS2, B becomes D7 port.
* If D6 switch among SW49~SW56 is on at D, the key 49~56 can be used as D6 port.
* If D7 switch among SW57~SW64 is on at D, the key 57~64 can be used as D7 port.
* note : the position of SW49~56 and SW57~64 in B/D is changed. The reference position is right.
* If you want to increase the remote controller valid distance, you try to disconnect R 2 resistor and lessen R1 resistor.

MASK ORDER \& VERIFICATION SHEET HMS3 $\square 112$-R

1. Customer Information

Company Name	
Name \& Signature	

Tel:	Fax:
Order Date	

2. Device Information

Mask Data	E-Mail		$($
	File Name		
	Check Sum		

3. Mask Option

Inclusion of Pull-up Register	Port	R2	R3
	Y/N		

Release of Stop mode	Port	K0	K1	K2	K3	R0	R1	R2	R3
	Y/N								

Status of D port while Stop mode	Port	D4	D5	D6
	a			

1. Don't use WDTR instruction in subroutine.
2. Use Br \$ at start (except 0 page), end and unused address in every page.
3. a: State of " L " forcibly, b: Remain the state just before stop instruction. You must select "a" option when you use Dport as key application.
4. D6 port is available for HMS38112 but not available for HMS39112
5. Marking Specification

-

Standard Marking

MagnaChip
$\mathbf{R} \square \square \square \square$

\square
User Marking

5. Delivery Schedule

Mask Sample	Date	Quantity	Confirmation
Risk Order	.	.	pcs

6. ROM CODE Verification

