

Current Transducer HNC-050.. 100P

 $I_{PN} = 50 ... 100 A$

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electri	cal data		172	V
Primary nomina DC current	Primary current measuring range		Туре	
I _{PN} (A)	I _P (A)			
50	0 ± 75		HNC - 0	50P
100	0 ± 140		HNC - 1	00P
		HNC - 050P	HNC - 100P	
R_{M}	Measuing resistance	60 90	60 80	Ω
I _{SN} K _N	Second nominal current	50	50	m/
K _N	Turns ratio	1:1000	1:2000	
V _C	Supply voltage (± 5 %)		± 15	V
I c	Current consumpution		15 + I _{SN}	m A

R.m.s. voltage for AC isolation test, 50/60Hz, 1 min

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2500 V
- Low power consumption

L	Accuracy-Dynamic performance data
X	Accuracy @ T _A = 25°C
e	Linearity (0 ± I _{PN})

, .	Accorded S I A = 20 C	/0 O. I _{PN}
e	Linearity (0 ± I _{PN})	< ± 0.5 %
I _o	Electrical offset current $@I_P = 0$, $@T_A = 25^{\circ}C$	± 0.2 mA
I _{HC}	Hysteresis offset current @ $I_p = 0$,	
	after an excursion of I _{PN}	± 0.15 mA
I _{OT}	Thermal drift of I ₀ 0°C +70°C	± 0.005 ms/°C
ť,	Response time @ 90% of Ip	<1 µs
TC e	Thermal drift of the gain (% of reading)	< ± 0.004 %/°C

Advantages

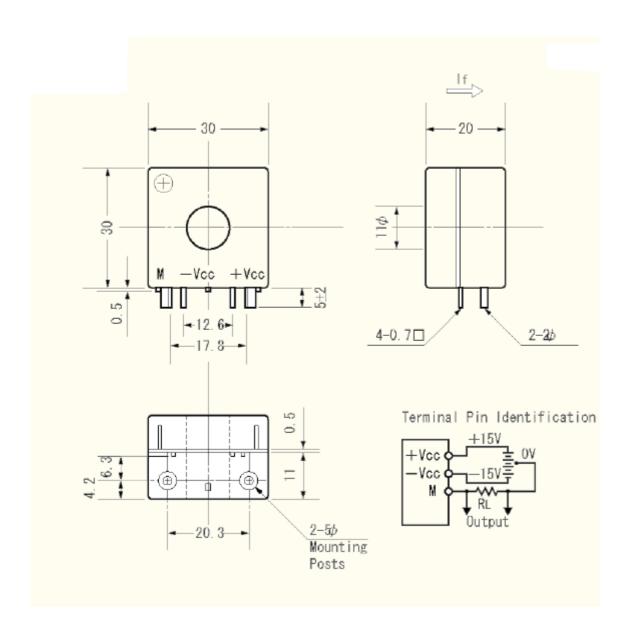
% of I

- Easy mounting
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference

General data

T _A T _S	Ambient operating temperature Ambient storage temperature		- 10 + 80 - 15 + 85	_
$R_{\rm S}$	Secondary coil Resistance	HNC - 200P	HNC - 300P	
m	@ T _A = 25°C Mass	75 GOM	95	Ω g
300	WWW.DZS			

Applications


- DC motor drives
- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Battery supplied applications
- Inverters

HNC- 050 .. 100P

UNIT: mm